基于自适应重检测机制的多尺度相关滤波跟踪

Ruoling Yang, Tingfa Xu, Yunru Bai, Axin Fan, Bo Yuan
{"title":"基于自适应重检测机制的多尺度相关滤波跟踪","authors":"Ruoling Yang, Tingfa Xu, Yunru Bai, Axin Fan, Bo Yuan","doi":"10.1109/ICIASE45644.2019.9074120","DOIUrl":null,"url":null,"abstract":"Tracking is a popular research topic in artificial intelligence, but how to handle the severe occlusion and deformation remains a challenging problem. Focusing on this issue, we propose a multi-scale correlation filter tracker using a re-detection module. Specifically, we utilize a reliable confidence strategy to estimate the reliability of initial results, and introduce a novel template matching technique to solve the target relocation problem. Experiment results demonstrate that our method can outperform several classic trackers.","PeriodicalId":206741,"journal":{"name":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale Correlation Filter Tracking with Adaptive Re-detection Mechanism\",\"authors\":\"Ruoling Yang, Tingfa Xu, Yunru Bai, Axin Fan, Bo Yuan\",\"doi\":\"10.1109/ICIASE45644.2019.9074120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking is a popular research topic in artificial intelligence, but how to handle the severe occlusion and deformation remains a challenging problem. Focusing on this issue, we propose a multi-scale correlation filter tracker using a re-detection module. Specifically, we utilize a reliable confidence strategy to estimate the reliability of initial results, and introduce a novel template matching technique to solve the target relocation problem. Experiment results demonstrate that our method can outperform several classic trackers.\",\"PeriodicalId\":206741,\"journal\":{\"name\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASE45644.2019.9074120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASE45644.2019.9074120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跟踪是人工智能领域的一个热门研究课题,但如何处理严重的遮挡和变形仍然是一个具有挑战性的问题。针对这一问题,我们提出了一种使用重检测模块的多尺度相关滤波跟踪器。具体来说,我们利用可靠置信度策略来估计初始结果的可靠性,并引入了一种新的模板匹配技术来解决目标重新定位问题。实验结果表明,该方法优于几种经典跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-scale Correlation Filter Tracking with Adaptive Re-detection Mechanism
Tracking is a popular research topic in artificial intelligence, but how to handle the severe occlusion and deformation remains a challenging problem. Focusing on this issue, we propose a multi-scale correlation filter tracker using a re-detection module. Specifically, we utilize a reliable confidence strategy to estimate the reliability of initial results, and introduce a novel template matching technique to solve the target relocation problem. Experiment results demonstrate that our method can outperform several classic trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Harvesting Path Planning Strategy on the Quality of Information for Wireless Sensor Networks PHGWO: A Duty Cycle Design Method for High-density Wireless Sensor Networks Obstacle Avoidance Path Planning Based on Target Heuristic and Repair Genetic Algorithms Research on Thermal Error of CNC Machine Tool Based on DBSCAN Clustering and BP Neural Network Algorithm Implementation of Remote Control a Mower Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1