制定温室气体计量标准,实现污染物效率评价的高计量质量

Jui-Hsiang Cheng
{"title":"制定温室气体计量标准,实现污染物效率评价的高计量质量","authors":"Jui-Hsiang Cheng","doi":"10.51843/wsproceedings.2014.010","DOIUrl":null,"url":null,"abstract":"The control of greenhouse gases (GHGs) emission is one of the most critical environmental challenges facing all countries worldwide. CO2, the most representative greenhouse gas, is the primary GHG emitted through human activities, and the regulation of its emission has been an international issue. However, certain non-CO2 GHGs possess global warming potentials (GWPs) as high as tens to even ten thousands times that of CO2. For example, fluorinated greenhouse gases (F-GHGs), including CF4, C2F6, C3F8, C4F8, CHF3, CH2F2, SF6, NF3 and so on, have been widely used as etching process or chamber cleaning gases in semiconductor-related industries. Due to their high GWPs, F-GHGs are the most potent and longest lasting type of anthropogenic GHGs. Therefore, it has been an international goal to reduce the emissions of F-GHGs as well as other GHGs into the atmosphere. To evaluate the effectiveness of an F-GHG abatement system, measurement standards are needed for accurate and reliable quantification of the F-GHG emissions. CMS/ITRI is developing primary reference gas mixtures (PRMs) for high GWP GHGs, such as CF4, SF6 and NF3, to achieve the highest metrological qualities in gas concentration measurement. The production of gas mixtures follows ISO 6142: 2001, and the quality system is in compliance with ISO Guide 34: 2009. These PRMs can be used as primary standards to calibrate analyzers, and can act as the source of metrological traceability when performing instrument certification or validation. They can also be applied to check the accuracy of commercial infrared spectra installed in Fourier transform infrared (FTIR) spectrometers for quantification to evaluate the destruction or removal efficiency (DRE) of F-GHG abatement equipment in electronics manufacturing.","PeriodicalId":446344,"journal":{"name":"NCSL International Workshop & Symposium Conference Proceedings 2014","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Greenhouse Gases Measurement Standards to Achieve High Metrological Qualities for Evaluation of Pollutant Efficiency\",\"authors\":\"Jui-Hsiang Cheng\",\"doi\":\"10.51843/wsproceedings.2014.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control of greenhouse gases (GHGs) emission is one of the most critical environmental challenges facing all countries worldwide. CO2, the most representative greenhouse gas, is the primary GHG emitted through human activities, and the regulation of its emission has been an international issue. However, certain non-CO2 GHGs possess global warming potentials (GWPs) as high as tens to even ten thousands times that of CO2. For example, fluorinated greenhouse gases (F-GHGs), including CF4, C2F6, C3F8, C4F8, CHF3, CH2F2, SF6, NF3 and so on, have been widely used as etching process or chamber cleaning gases in semiconductor-related industries. Due to their high GWPs, F-GHGs are the most potent and longest lasting type of anthropogenic GHGs. Therefore, it has been an international goal to reduce the emissions of F-GHGs as well as other GHGs into the atmosphere. To evaluate the effectiveness of an F-GHG abatement system, measurement standards are needed for accurate and reliable quantification of the F-GHG emissions. CMS/ITRI is developing primary reference gas mixtures (PRMs) for high GWP GHGs, such as CF4, SF6 and NF3, to achieve the highest metrological qualities in gas concentration measurement. The production of gas mixtures follows ISO 6142: 2001, and the quality system is in compliance with ISO Guide 34: 2009. These PRMs can be used as primary standards to calibrate analyzers, and can act as the source of metrological traceability when performing instrument certification or validation. They can also be applied to check the accuracy of commercial infrared spectra installed in Fourier transform infrared (FTIR) spectrometers for quantification to evaluate the destruction or removal efficiency (DRE) of F-GHG abatement equipment in electronics manufacturing.\",\"PeriodicalId\":446344,\"journal\":{\"name\":\"NCSL International Workshop & Symposium Conference Proceedings 2014\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCSL International Workshop & Symposium Conference Proceedings 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51843/wsproceedings.2014.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCSL International Workshop & Symposium Conference Proceedings 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51843/wsproceedings.2014.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

控制温室气体排放是世界各国面临的最严峻的环境挑战之一。二氧化碳是人类活动排放的主要温室气体,是最具代表性的温室气体,其排放监管一直是一个国际问题。然而,某些非二氧化碳温室气体的全球变暖潜能值(GWPs)高达二氧化碳的数万倍甚至数万倍。例如,氟化温室气体(F-GHGs),包括CF4、C2F6、C3F8、C4F8、CHF3、CH2F2、SF6、NF3等,已广泛用于半导体相关行业的蚀刻工艺或室清洗气体。由于其较高的全球升温潜能值,f -温室气体是最有效和持续时间最长的人为温室气体类型。因此,减少f - ghg以及其他温室气体排放到大气中一直是国际目标。为了评估F-GHG减排系统的有效性,需要准确可靠地量化F-GHG排放的测量标准。CMS/ITRI正在开发用于高GWP温室气体(如CF4, SF6和NF3)的主要参考气体混合物(PRMs),以实现气体浓度测量的最高计量质量。气体混合物的生产遵循ISO 6142: 2001,质量体系符合ISO指南34:2009。这些PRMs可以用作校准分析仪的主要标准,并且在执行仪器认证或验证时可以作为计量可追溯性的来源。它们还可以用于检查安装在傅里叶变换红外(FTIR)光谱仪中的商用红外光谱的准确性,用于量化评估电子制造业中F-GHG减排设备的破坏或去除效率(DRE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Greenhouse Gases Measurement Standards to Achieve High Metrological Qualities for Evaluation of Pollutant Efficiency
The control of greenhouse gases (GHGs) emission is one of the most critical environmental challenges facing all countries worldwide. CO2, the most representative greenhouse gas, is the primary GHG emitted through human activities, and the regulation of its emission has been an international issue. However, certain non-CO2 GHGs possess global warming potentials (GWPs) as high as tens to even ten thousands times that of CO2. For example, fluorinated greenhouse gases (F-GHGs), including CF4, C2F6, C3F8, C4F8, CHF3, CH2F2, SF6, NF3 and so on, have been widely used as etching process or chamber cleaning gases in semiconductor-related industries. Due to their high GWPs, F-GHGs are the most potent and longest lasting type of anthropogenic GHGs. Therefore, it has been an international goal to reduce the emissions of F-GHGs as well as other GHGs into the atmosphere. To evaluate the effectiveness of an F-GHG abatement system, measurement standards are needed for accurate and reliable quantification of the F-GHG emissions. CMS/ITRI is developing primary reference gas mixtures (PRMs) for high GWP GHGs, such as CF4, SF6 and NF3, to achieve the highest metrological qualities in gas concentration measurement. The production of gas mixtures follows ISO 6142: 2001, and the quality system is in compliance with ISO Guide 34: 2009. These PRMs can be used as primary standards to calibrate analyzers, and can act as the source of metrological traceability when performing instrument certification or validation. They can also be applied to check the accuracy of commercial infrared spectra installed in Fourier transform infrared (FTIR) spectrometers for quantification to evaluate the destruction or removal efficiency (DRE) of F-GHG abatement equipment in electronics manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Primary Gas Flow Standards Spanning the Range 10 sccm N2 to 10 slm N2 Can we calibrate a 1 mW @ 50 MHz power reference SWR using a VNA? Retention Strategies to Consider When Creating Training Presentations The role of uncertainty of measurement In conformance testing Project-based learning as a strategy for teaching metrology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1