基于指数平滑时间序列和反向传播方法的回归预测模型

N. B. Elizaga, Elmer A. Maravillas, B. Gerardo
{"title":"基于指数平滑时间序列和反向传播方法的回归预测模型","authors":"N. B. Elizaga, Elmer A. Maravillas, B. Gerardo","doi":"10.1109/HNICEM.2014.7016185","DOIUrl":null,"url":null,"abstract":"This paper deals with time series exponential smoothing and artificial neural network-based backpropagation methods in formulating a reservoir inflow forecasting model for Angat Dam in the Philippines. The predictive model is trained using dam daily average inflow observations inclusive of years 2003 to 2012, as recorded. Any real-time inflows forming a 5-consecutive-day vector could serve as input to the regression process. Its predictive power as measured by correlation coefficient at 0.959 for observed and predicted inflows taken from blind test set as well as 0.925 from validation set, could provide model users better perspective and outlook with regard to reservoir inflow conditions 24 hours into the future. In the background, this proposed model can offer dam managers protracted time in arriving at optimum reservoir water storage estimation as well as in load dispatching and scheduling when integrated into a decision support application.","PeriodicalId":309548,"journal":{"name":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Regression-based inflow forecasting model using exponential smoothing time series and backpropagation methods for Angat Dam\",\"authors\":\"N. B. Elizaga, Elmer A. Maravillas, B. Gerardo\",\"doi\":\"10.1109/HNICEM.2014.7016185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with time series exponential smoothing and artificial neural network-based backpropagation methods in formulating a reservoir inflow forecasting model for Angat Dam in the Philippines. The predictive model is trained using dam daily average inflow observations inclusive of years 2003 to 2012, as recorded. Any real-time inflows forming a 5-consecutive-day vector could serve as input to the regression process. Its predictive power as measured by correlation coefficient at 0.959 for observed and predicted inflows taken from blind test set as well as 0.925 from validation set, could provide model users better perspective and outlook with regard to reservoir inflow conditions 24 hours into the future. In the background, this proposed model can offer dam managers protracted time in arriving at optimum reservoir water storage estimation as well as in load dispatching and scheduling when integrated into a decision support application.\",\"PeriodicalId\":309548,\"journal\":{\"name\":\"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2014.7016185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2014.7016185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文采用时间序列指数平滑和基于人工神经网络的反向传播方法建立了菲律宾安格特大坝入库预测模型。该预测模型是根据大坝2003年至2012年的日平均入流观测数据进行训练的。任何形成连续5天矢量的实时流入都可以作为回归过程的输入。盲测集的观测和预测流量的相关系数为0.959,验证集的相关系数为0.925,模型的预测能力可以为模型用户提供未来24小时内水库流入情况的更好的视角和前景。在此背景下,当集成到决策支持应用程序中时,该模型可以为大坝管理者提供较长的时间来达到最佳水库蓄水量估计以及负荷调度和调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regression-based inflow forecasting model using exponential smoothing time series and backpropagation methods for Angat Dam
This paper deals with time series exponential smoothing and artificial neural network-based backpropagation methods in formulating a reservoir inflow forecasting model for Angat Dam in the Philippines. The predictive model is trained using dam daily average inflow observations inclusive of years 2003 to 2012, as recorded. Any real-time inflows forming a 5-consecutive-day vector could serve as input to the regression process. Its predictive power as measured by correlation coefficient at 0.959 for observed and predicted inflows taken from blind test set as well as 0.925 from validation set, could provide model users better perspective and outlook with regard to reservoir inflow conditions 24 hours into the future. In the background, this proposed model can offer dam managers protracted time in arriving at optimum reservoir water storage estimation as well as in load dispatching and scheduling when integrated into a decision support application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual surveying control of an autonomous underwater vehicle Sensor fusion for localization, mapping and navigation in an indoor environment Determination of optimum placement of the liquid metal antenna design embedded in concrete beam prototype under center — Point loading test Prolonged distraction testing game implemented with ImpactJS HTML5, Gamepad and Neurosky Net energy analysis of Jatropha press-cake utilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1