9.5 80Gb/s 300ghz波段单片CMOS收发器

Sangyeop Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A. Kasamatsu, J. Sato, M. Fujishima
{"title":"9.5 80Gb/s 300ghz波段单片CMOS收发器","authors":"Sangyeop Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A. Kasamatsu, J. Sato, M. Fujishima","doi":"10.1109/ISSCC.2019.8662314","DOIUrl":null,"url":null,"abstract":"IEEE Standard 802.15.3d, published in October 2017, defines a high-data-rate wireless physical layer that enables up to 100Gb/s using the lower THz frequency range between 252 and 325GHz (hereafter referred to as the “300GHz band”). It stipulates that the 300GHz band be channelized into thirty-two 2.16GHz-wide channels (Fig. 9.5.1) or a smaller number of wider channels whose bandwidths are all integer multiples of 2.16GHz. This paper presents a CMOS transceiver (TRX) chip targeted at channels 49 through 51 and 66 of 802.15.3d (Fig. 9.5.1). The TRX was fabricated using a 40nm CMOS process. There have been reports on solid-state transceivers (TRXs) operating in or near the 300GHz band [1]–[6]. Some of these [1]–[3] were TX/RX or block-level chipsets, which can enjoy more flexibility in design and independent optimization of TX and RX. They successfully achieved $\\geq 64$ Gb/s. On the other hand, single-chip TRXs [4]–[6] did not always reveal achievable data-rates nor were capable of supporting quadrature amplitude modulation (QAM). Nevertheless, eventual development of full-featured single-chip TRXs is desirable especially for applications requiring deployment of many TRXs, as is envisioned implicitly by 802.15.3d. The single-chip QAM-capable CMOS TRX presented herein is an outcome of efforts in that direction.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"9.5 An 80Gb/s 300GHz-Band Single-Chip CMOS Transceiver\",\"authors\":\"Sangyeop Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A. Kasamatsu, J. Sato, M. Fujishima\",\"doi\":\"10.1109/ISSCC.2019.8662314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IEEE Standard 802.15.3d, published in October 2017, defines a high-data-rate wireless physical layer that enables up to 100Gb/s using the lower THz frequency range between 252 and 325GHz (hereafter referred to as the “300GHz band”). It stipulates that the 300GHz band be channelized into thirty-two 2.16GHz-wide channels (Fig. 9.5.1) or a smaller number of wider channels whose bandwidths are all integer multiples of 2.16GHz. This paper presents a CMOS transceiver (TRX) chip targeted at channels 49 through 51 and 66 of 802.15.3d (Fig. 9.5.1). The TRX was fabricated using a 40nm CMOS process. There have been reports on solid-state transceivers (TRXs) operating in or near the 300GHz band [1]–[6]. Some of these [1]–[3] were TX/RX or block-level chipsets, which can enjoy more flexibility in design and independent optimization of TX and RX. They successfully achieved $\\\\geq 64$ Gb/s. On the other hand, single-chip TRXs [4]–[6] did not always reveal achievable data-rates nor were capable of supporting quadrature amplitude modulation (QAM). Nevertheless, eventual development of full-featured single-chip TRXs is desirable especially for applications requiring deployment of many TRXs, as is envisioned implicitly by 802.15.3d. The single-chip QAM-capable CMOS TRX presented herein is an outcome of efforts in that direction.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

2017年10月发布的IEEE标准802.15.3d定义了一个高数据速率无线物理层,该物理层使用252至325GHz(以下称为“300GHz频段”)之间的较低太赫兹频率范围,可实现高达100Gb/s的速率。它规定300GHz频段被信道化为32个2.16GHz宽的信道(图9.5.1)或更少的带宽为2.16GHz整数倍的更宽的信道。本文提出了一种针对802.15.3d的49 ~ 51和66通道的CMOS收发器(TRX)芯片(图9.5.1)。TRX采用40nm CMOS工艺制备。已经有关于固态收发器(trx)在300GHz频段[1]-[6]或附近工作的报道。其中一些[1]-[3]是TX/RX或块级芯片组,可以享受更大的设计灵活性和TX和RX的独立优化。他们成功地达到了$\geq 64$ Gb/s。另一方面,单片TRXs[4] -[6]并不总是显示可实现的数据速率,也不能支持正交调幅(QAM)。然而,最终开发全功能单芯片trx是可取的,特别是对于需要部署许多trx的应用程序,正如802.15.3 3d所隐含的那样。本文提出的单芯片QAM-capable CMOS TRX是该方向努力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
9.5 An 80Gb/s 300GHz-Band Single-Chip CMOS Transceiver
IEEE Standard 802.15.3d, published in October 2017, defines a high-data-rate wireless physical layer that enables up to 100Gb/s using the lower THz frequency range between 252 and 325GHz (hereafter referred to as the “300GHz band”). It stipulates that the 300GHz band be channelized into thirty-two 2.16GHz-wide channels (Fig. 9.5.1) or a smaller number of wider channels whose bandwidths are all integer multiples of 2.16GHz. This paper presents a CMOS transceiver (TRX) chip targeted at channels 49 through 51 and 66 of 802.15.3d (Fig. 9.5.1). The TRX was fabricated using a 40nm CMOS process. There have been reports on solid-state transceivers (TRXs) operating in or near the 300GHz band [1]–[6]. Some of these [1]–[3] were TX/RX or block-level chipsets, which can enjoy more flexibility in design and independent optimization of TX and RX. They successfully achieved $\geq 64$ Gb/s. On the other hand, single-chip TRXs [4]–[6] did not always reveal achievable data-rates nor were capable of supporting quadrature amplitude modulation (QAM). Nevertheless, eventual development of full-featured single-chip TRXs is desirable especially for applications requiring deployment of many TRXs, as is envisioned implicitly by 802.15.3d. The single-chip QAM-capable CMOS TRX presented herein is an outcome of efforts in that direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
27.2 An Adiabatic Sense and Set Rectifier for Improved Maximum-Power-Point Tracking in Piezoelectric Harvesting with 541% Energy Extraction Gain 22.7 A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control 2.5 A 40×40 Four-Neighbor Time-Based In-Memory Computing Graph ASIC Chip Featuring Wavefront Expansion and 2D Gradient Control 11.2 A CMOS Biosensor Array with 1024 3-Electrode Voltammetry Pixels and 93dB Dynamic Range 11.3 A Capacitive Biosensor for Cancer Diagnosis Using a Functionalized Microneedle and a 13.7b-Resolution Capacitance-to-Digital Converter from 1 to 100nF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1