连续优化的进化算法与数学规划方法的比较研究

Ye Tian, Haowen Chen, Xiaoshu Xiang, Hao Jiang, Xing-yi Zhang
{"title":"连续优化的进化算法与数学规划方法的比较研究","authors":"Ye Tian, Haowen Chen, Xiaoshu Xiang, Hao Jiang, Xing-yi Zhang","doi":"10.1109/CEC55065.2022.9870359","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms and mathematical programming methods are currently the most popular optimizers for solving continuous optimization problems. Owing to the population based search strategies, evolutionary algorithms can find a set of promising solutions without using any problem-specific information. By contrast, with the assistance of gradient and other information of the functions, mathematical programming methods can quickly converge to a single optimum. While these two types of optimizers have their own advantages and disadvantages, the performance comparison between them is rarely touched. It is known that gradient descent methods generally converge faster than evolutionary algorithms, but when can evolutionary algorithms outperform gradient descent methods? How is the scalability of them? To answer these questions, this paper first gives a review of popular evolutionary algorithms and mathematical programming methods, then conducts several experiments to compare their performance from various aspects, and finally draws some conclusions.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparative Study on Evolutionary Algorithms and Mathematical Programming Methods for Continuous Optimization\",\"authors\":\"Ye Tian, Haowen Chen, Xiaoshu Xiang, Hao Jiang, Xing-yi Zhang\",\"doi\":\"10.1109/CEC55065.2022.9870359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary algorithms and mathematical programming methods are currently the most popular optimizers for solving continuous optimization problems. Owing to the population based search strategies, evolutionary algorithms can find a set of promising solutions without using any problem-specific information. By contrast, with the assistance of gradient and other information of the functions, mathematical programming methods can quickly converge to a single optimum. While these two types of optimizers have their own advantages and disadvantages, the performance comparison between them is rarely touched. It is known that gradient descent methods generally converge faster than evolutionary algorithms, but when can evolutionary algorithms outperform gradient descent methods? How is the scalability of them? To answer these questions, this paper first gives a review of popular evolutionary algorithms and mathematical programming methods, then conducts several experiments to compare their performance from various aspects, and finally draws some conclusions.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

进化算法和数学规划方法是目前解决连续优化问题最常用的优化方法。由于采用基于群体的搜索策略,进化算法可以在不使用任何问题特定信息的情况下找到一组有希望的解决方案。而数学规划方法在梯度等函数信息的辅助下,可以快速收敛到单个最优解。虽然这两种类型的优化器各有优缺点,但很少涉及它们之间的性能比较。众所周知,梯度下降方法通常比进化算法收敛得更快,但是什么时候进化算法能胜过梯度下降方法呢?它们的可扩展性如何?为了回答这些问题,本文首先回顾了流行的进化算法和数学规划方法,然后进行了几个实验,从各个方面比较了它们的性能,最后得出了一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study on Evolutionary Algorithms and Mathematical Programming Methods for Continuous Optimization
Evolutionary algorithms and mathematical programming methods are currently the most popular optimizers for solving continuous optimization problems. Owing to the population based search strategies, evolutionary algorithms can find a set of promising solutions without using any problem-specific information. By contrast, with the assistance of gradient and other information of the functions, mathematical programming methods can quickly converge to a single optimum. While these two types of optimizers have their own advantages and disadvantages, the performance comparison between them is rarely touched. It is known that gradient descent methods generally converge faster than evolutionary algorithms, but when can evolutionary algorithms outperform gradient descent methods? How is the scalability of them? To answer these questions, this paper first gives a review of popular evolutionary algorithms and mathematical programming methods, then conducts several experiments to compare their performance from various aspects, and finally draws some conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1