结合深度学习和小波变换的传感器故障诊断

J. J. P. Abadía, H. Fritz, K. Dragos, K. Smarsly
{"title":"结合深度学习和小波变换的传感器故障诊断","authors":"J. J. P. Abadía, H. Fritz, K. Dragos, K. Smarsly","doi":"10.12783/shm2021/36327","DOIUrl":null,"url":null,"abstract":"Sensor networks facilitate collecting measurement data necessary for decision making regarding structural maintenance and rehabilitation in structural health monitoring (SHM) systems. Nevertheless, the reliability of decision making in SHM systems depends on the proper operation of the sensors. Sensors may exhibit faults, entailing faulty data and incorrect judgment of structural conditions. Therefore, fault diagnosis (FD), comprising detection, isolation, identification, and accommodation of sensor faults, has been introduced in SHM systems, enabling timely detection of faulty data while advancing reliable operation of SHM systems. Traditional FD approaches based on “analytical redundancy” take advantage of correlated sensor data inherent to the SHM system, sometimes neglecting the fault identification step, and are implemented for specific sensor data. In this paper, an analytical redundancy FD approach for SHM systems, coupled with machine learning algorithms and wavelet transforms, capable of processing any type of sensor data is presented. A machine learning (ML) regression algorithm is proposed for fault detection, fault isolation, and fault accommodation, and an ML classification algorithm is proposed for fault identification. Continuous wavelet transform (CWT) is used as a preprocessing step of fault identification, exposing fault patterns in the data. The ML-CWT-FD approach is validated using data from a real-world SHM system in operation at a railway bridge implementing a deep neural network as ML regression algorithm and a convolutional neural network as ML classification algorithm. As a result of this paper, the ML-CWTFD approach is demonstrated to be capable of ensuring reliable SHM systems.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SENSOR FAULT DIAGNOSIS COUPLING DEEP LEARNING AND WAVELET TRANSFORMS\",\"authors\":\"J. J. P. Abadía, H. Fritz, K. Dragos, K. Smarsly\",\"doi\":\"10.12783/shm2021/36327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor networks facilitate collecting measurement data necessary for decision making regarding structural maintenance and rehabilitation in structural health monitoring (SHM) systems. Nevertheless, the reliability of decision making in SHM systems depends on the proper operation of the sensors. Sensors may exhibit faults, entailing faulty data and incorrect judgment of structural conditions. Therefore, fault diagnosis (FD), comprising detection, isolation, identification, and accommodation of sensor faults, has been introduced in SHM systems, enabling timely detection of faulty data while advancing reliable operation of SHM systems. Traditional FD approaches based on “analytical redundancy” take advantage of correlated sensor data inherent to the SHM system, sometimes neglecting the fault identification step, and are implemented for specific sensor data. In this paper, an analytical redundancy FD approach for SHM systems, coupled with machine learning algorithms and wavelet transforms, capable of processing any type of sensor data is presented. A machine learning (ML) regression algorithm is proposed for fault detection, fault isolation, and fault accommodation, and an ML classification algorithm is proposed for fault identification. Continuous wavelet transform (CWT) is used as a preprocessing step of fault identification, exposing fault patterns in the data. The ML-CWT-FD approach is validated using data from a real-world SHM system in operation at a railway bridge implementing a deep neural network as ML regression algorithm and a convolutional neural network as ML classification algorithm. As a result of this paper, the ML-CWTFD approach is demonstrated to be capable of ensuring reliable SHM systems.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在结构健康监测(SHM)系统中,传感器网络有助于收集有关结构维护和修复决策所需的测量数据。然而,SHM系统决策的可靠性取决于传感器的正常工作。传感器可能出现故障,导致错误的数据和对结构状况的错误判断。因此,在SHM系统中引入了故障诊断(FD),包括传感器故障的检测、隔离、识别和调整,从而能够及时检测故障数据,同时促进SHM系统的可靠运行。传统的基于“分析冗余”的FD方法利用了SHM系统固有的相关传感器数据,有时忽略了故障识别步骤,并且针对特定的传感器数据实现。本文提出了一种用于SHM系统的分析冗余FD方法,结合机器学习算法和小波变换,能够处理任何类型的传感器数据。提出了一种机器学习(ML)回归算法用于故障检测、故障隔离和故障调节,并提出了一种机器学习分类算法用于故障识别。采用连续小波变换(CWT)作为故障识别的预处理步骤,揭示数据中的故障模式。ML- cwt - fd方法使用在铁路桥上运行的真实SHM系统的数据进行验证,该系统实现了深度神经网络作为ML回归算法和卷积神经网络作为ML分类算法。本文的结果表明,ML-CWTFD方法能够确保可靠的SHM系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SENSOR FAULT DIAGNOSIS COUPLING DEEP LEARNING AND WAVELET TRANSFORMS
Sensor networks facilitate collecting measurement data necessary for decision making regarding structural maintenance and rehabilitation in structural health monitoring (SHM) systems. Nevertheless, the reliability of decision making in SHM systems depends on the proper operation of the sensors. Sensors may exhibit faults, entailing faulty data and incorrect judgment of structural conditions. Therefore, fault diagnosis (FD), comprising detection, isolation, identification, and accommodation of sensor faults, has been introduced in SHM systems, enabling timely detection of faulty data while advancing reliable operation of SHM systems. Traditional FD approaches based on “analytical redundancy” take advantage of correlated sensor data inherent to the SHM system, sometimes neglecting the fault identification step, and are implemented for specific sensor data. In this paper, an analytical redundancy FD approach for SHM systems, coupled with machine learning algorithms and wavelet transforms, capable of processing any type of sensor data is presented. A machine learning (ML) regression algorithm is proposed for fault detection, fault isolation, and fault accommodation, and an ML classification algorithm is proposed for fault identification. Continuous wavelet transform (CWT) is used as a preprocessing step of fault identification, exposing fault patterns in the data. The ML-CWT-FD approach is validated using data from a real-world SHM system in operation at a railway bridge implementing a deep neural network as ML regression algorithm and a convolutional neural network as ML classification algorithm. As a result of this paper, the ML-CWTFD approach is demonstrated to be capable of ensuring reliable SHM systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NONLINEAR BULK WAVE PROPAGATION IN A MATERIAL WITH RANDOMLY DISTRIBUTED SYMMETRIC AND ASYMMETRIC HYSTERETIC NONLINEARITY SPATIAL FILTERING TECHNIQUE-BASED ENHANCEMENT OF THE RECONSTRUCTION ALGORITHM FOR THE PROBABILISTIC INSPECTION OF DAMAGE (RAPID) KOOPMAN OPERATOR BASED FAULT DIAGNOSTIC METHODS FOR MECHANICAL SYSTEMS ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS INTELLIGENT IDENTIFICATION OF RIVET CORROSION ON STEEL TRUSS BRIDGE BY SINGLE-STAGE DETECTION NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1