{"title":"用非导电胶粘剂将30μm间距的铜柱微凸起裸露在有机衬底上进行热压缩粘接","authors":"J. Aw, A. Chow, K. Y. Au, Jong-Kai Lin","doi":"10.1109/EPTC.2014.7028350","DOIUrl":null,"url":null,"abstract":"The assembly capability of 30μm ultra-fine pitch Cu pillar flip chip interconnect on a two-layer FCCSP organic substrate with a chip size of 8mm × 8mm × 0.1mm chip was demonstrated by using thermal compression bonding with non-conductive paste (TCB-NCP) to mitigate the issue of coefficient of thermal expansion (CTE) mismatch between silicon chip and organic substrate. A method, developed to quantify post-bonding misalignment, was used to study the effects of different bonding approaches. This paper reports on details of the bill of materials (BoM); description of method to determine mis-alignment; the effects of different bonding approach; assembly challenges; and reliability assessment involving the solder cap volume effects on flip chip joint fatigue life under temperature cycling tests.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Thermal compression bonding with non-conductive adhesive of 30μm pitch Cu pillar micro bumps on organic substrate with bare Cu bondpads\",\"authors\":\"J. Aw, A. Chow, K. Y. Au, Jong-Kai Lin\",\"doi\":\"10.1109/EPTC.2014.7028350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The assembly capability of 30μm ultra-fine pitch Cu pillar flip chip interconnect on a two-layer FCCSP organic substrate with a chip size of 8mm × 8mm × 0.1mm chip was demonstrated by using thermal compression bonding with non-conductive paste (TCB-NCP) to mitigate the issue of coefficient of thermal expansion (CTE) mismatch between silicon chip and organic substrate. A method, developed to quantify post-bonding misalignment, was used to study the effects of different bonding approaches. This paper reports on details of the bill of materials (BoM); description of method to determine mis-alignment; the effects of different bonding approach; assembly challenges; and reliability assessment involving the solder cap volume effects on flip chip joint fatigue life under temperature cycling tests.\",\"PeriodicalId\":115713,\"journal\":{\"name\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2014.7028350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal compression bonding with non-conductive adhesive of 30μm pitch Cu pillar micro bumps on organic substrate with bare Cu bondpads
The assembly capability of 30μm ultra-fine pitch Cu pillar flip chip interconnect on a two-layer FCCSP organic substrate with a chip size of 8mm × 8mm × 0.1mm chip was demonstrated by using thermal compression bonding with non-conductive paste (TCB-NCP) to mitigate the issue of coefficient of thermal expansion (CTE) mismatch between silicon chip and organic substrate. A method, developed to quantify post-bonding misalignment, was used to study the effects of different bonding approaches. This paper reports on details of the bill of materials (BoM); description of method to determine mis-alignment; the effects of different bonding approach; assembly challenges; and reliability assessment involving the solder cap volume effects on flip chip joint fatigue life under temperature cycling tests.