用遗传算法发现可理解的分类规则

M. Fidelis, H. S. Lopes, A. Freitas
{"title":"用遗传算法发现可理解的分类规则","authors":"M. Fidelis, H. S. Lopes, A. Freitas","doi":"10.1109/CEC.2000.870381","DOIUrl":null,"url":null,"abstract":"Presents a classification algorithm based on genetic algorithms (GAs) that discovers comprehensible IF-THEN rules, in the spirit of data mining. The proposed GA has a flexible chromosome encoding, where each chromosome corresponds to a classification rule. Although the number of genes (the genotype) is fixed, the number of rule conditions (the phenotype) is variable. The GA also has specific mutation operators for this chromosome encoding. The algorithm was evaluated on two public-domain real-world data sets (in the medical domains of dermatology and breast cancer).","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"207","resultStr":"{\"title\":\"Discovering comprehensible classification rules with a genetic algorithm\",\"authors\":\"M. Fidelis, H. S. Lopes, A. Freitas\",\"doi\":\"10.1109/CEC.2000.870381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a classification algorithm based on genetic algorithms (GAs) that discovers comprehensible IF-THEN rules, in the spirit of data mining. The proposed GA has a flexible chromosome encoding, where each chromosome corresponds to a classification rule. Although the number of genes (the genotype) is fixed, the number of rule conditions (the phenotype) is variable. The GA also has specific mutation operators for this chromosome encoding. The algorithm was evaluated on two public-domain real-world data sets (in the medical domains of dermatology and breast cancer).\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"207\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 207

摘要

基于数据挖掘的精神,提出了一种基于遗传算法(GAs)的分类算法,发现可理解的IF-THEN规则。提出的遗传算法具有灵活的染色体编码,其中每条染色体对应一个分类规则。虽然基因的数量(基因型)是固定的,但规则条件的数量(表现型)是可变的。遗传算法也有特定的染色体编码突变算子。该算法在两个公共领域的真实世界数据集(在皮肤科和乳腺癌的医学领域)上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering comprehensible classification rules with a genetic algorithm
Presents a classification algorithm based on genetic algorithms (GAs) that discovers comprehensible IF-THEN rules, in the spirit of data mining. The proposed GA has a flexible chromosome encoding, where each chromosome corresponds to a classification rule. Although the number of genes (the genotype) is fixed, the number of rule conditions (the phenotype) is variable. The GA also has specific mutation operators for this chromosome encoding. The algorithm was evaluated on two public-domain real-world data sets (in the medical domains of dermatology and breast cancer).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1