临时数据库环境与磁盘块大小之间的关系

Michal Kvet
{"title":"临时数据库环境与磁盘块大小之间的关系","authors":"Michal Kvet","doi":"10.1109/Informatics57926.2022.10083452","DOIUrl":null,"url":null,"abstract":"Temporal databases are used to monitor states in the object, attribute, or group granularity. Performance of the data retrieval is a critical requirement, consisting of relevant data block identification, loading, and tuple extraction. Instance memory loading must always take the whole block. This paper deals with the impact of block size on the performance of temporal databases, by pointing to block fragmentation, expansion, and shrinking. It also points to the definition of block migration, if the tuple after the Update operation does not fit the original block.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relation between the Temporal Database Environment and Disc Block Size\",\"authors\":\"Michal Kvet\",\"doi\":\"10.1109/Informatics57926.2022.10083452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal databases are used to monitor states in the object, attribute, or group granularity. Performance of the data retrieval is a critical requirement, consisting of relevant data block identification, loading, and tuple extraction. Instance memory loading must always take the whole block. This paper deals with the impact of block size on the performance of temporal databases, by pointing to block fragmentation, expansion, and shrinking. It also points to the definition of block migration, if the tuple after the Update operation does not fit the original block.\",\"PeriodicalId\":101488,\"journal\":{\"name\":\"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Informatics57926.2022.10083452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时态数据库用于监视对象、属性或组粒度中的状态。数据检索的性能是一个关键需求,包括相关数据块识别、加载和元组提取。实例内存加载必须总是占用整个块。本文从块碎片、块扩展和块收缩三个方面讨论了块大小对时态数据库性能的影响。如果Update操作后的元组不适合原始块,则它还指向块迁移的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relation between the Temporal Database Environment and Disc Block Size
Temporal databases are used to monitor states in the object, attribute, or group granularity. Performance of the data retrieval is a critical requirement, consisting of relevant data block identification, loading, and tuple extraction. Instance memory loading must always take the whole block. This paper deals with the impact of block size on the performance of temporal databases, by pointing to block fragmentation, expansion, and shrinking. It also points to the definition of block migration, if the tuple after the Update operation does not fit the original block.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Engineers' Questions and Answers on Stack Exchange Collision detection and response approaches for computer muscle modelling Supervised learning data preprocessing for short-term traffic flow prediction A 1D CNN-based model for IoT anomaly detection using INT data Image steganography with using QR code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1