MPISec I/O:在MPI-I/O中提供数据机密性

R. Prabhakar, C. Patrick, M. Kandemir
{"title":"MPISec I/O:在MPI-I/O中提供数据机密性","authors":"R. Prabhakar, C. Patrick, M. Kandemir","doi":"10.1109/CCGRID.2009.53","DOIUrl":null,"url":null,"abstract":"Applications performing scientific computations or processing streaming media benefit from parallel I/O significantly, as they operate on large data sets that require large I/O. MPI-I/O is a commonly used library interface in parallel applications to perform I/O efficiently. Optimizations like collective-I/O embedded in MPI-I/O allow multiple processes executing in parallel to perform I/O by merging requests of other processes and sharing them later. In such a scenario, preserving confidentiality of disk-resident data from unauthorized accesses by processes without significantly impacting performance of the application is a challenging task. In this paper, we evaluate the impact of ensuring data-confidentiality in MPI-I/O on the performance of parallel applications and provide an enhanced interface, called MPISec I/O, which brings an average overhead of only 5.77% over MPI-I/O in the best case, and about 7.82% in the average case.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"2019 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"MPISec I/O: Providing Data Confidentiality in MPI-I/O\",\"authors\":\"R. Prabhakar, C. Patrick, M. Kandemir\",\"doi\":\"10.1109/CCGRID.2009.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications performing scientific computations or processing streaming media benefit from parallel I/O significantly, as they operate on large data sets that require large I/O. MPI-I/O is a commonly used library interface in parallel applications to perform I/O efficiently. Optimizations like collective-I/O embedded in MPI-I/O allow multiple processes executing in parallel to perform I/O by merging requests of other processes and sharing them later. In such a scenario, preserving confidentiality of disk-resident data from unauthorized accesses by processes without significantly impacting performance of the application is a challenging task. In this paper, we evaluate the impact of ensuring data-confidentiality in MPI-I/O on the performance of parallel applications and provide an enhanced interface, called MPISec I/O, which brings an average overhead of only 5.77% over MPI-I/O in the best case, and about 7.82% in the average case.\",\"PeriodicalId\":118263,\"journal\":{\"name\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"volume\":\"2019 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2009.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

执行科学计算或处理流媒体的应用程序明显受益于并行I/O,因为它们操作的是需要大量I/O的大型数据集。MPI-I/O是并行应用程序中常用的库接口,用于高效地执行I/O。像MPI-I/O中嵌入的集体I/O这样的优化允许并行执行的多个进程通过合并其他进程的请求并稍后共享它们来执行I/O。在这种场景中,在不显著影响应用程序性能的情况下,保持磁盘驻留数据的机密性,防止进程进行未经授权的访问,是一项具有挑战性的任务。在本文中,我们评估了在MPI-I/O中确保数据保密性对并行应用程序性能的影响,并提供了一个增强的接口,称为MPISec I/O,在最佳情况下,它比MPI-I/O带来的平均开销仅为5.77%,在平均情况下约为7.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPISec I/O: Providing Data Confidentiality in MPI-I/O
Applications performing scientific computations or processing streaming media benefit from parallel I/O significantly, as they operate on large data sets that require large I/O. MPI-I/O is a commonly used library interface in parallel applications to perform I/O efficiently. Optimizations like collective-I/O embedded in MPI-I/O allow multiple processes executing in parallel to perform I/O by merging requests of other processes and sharing them later. In such a scenario, preserving confidentiality of disk-resident data from unauthorized accesses by processes without significantly impacting performance of the application is a challenging task. In this paper, we evaluate the impact of ensuring data-confidentiality in MPI-I/O on the performance of parallel applications and provide an enhanced interface, called MPISec I/O, which brings an average overhead of only 5.77% over MPI-I/O in the best case, and about 7.82% in the average case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1