扫描声显微镜是一种可靠的微电子元件无损分析方法

M. Yazdan Mehr, A. Bahrami, H. Fischer, S. Gielen, R. Corbeij, W. V. van Driel, G. Zhang
{"title":"扫描声显微镜是一种可靠的微电子元件无损分析方法","authors":"M. Yazdan Mehr, A. Bahrami, H. Fischer, S. Gielen, R. Corbeij, W. V. van Driel, G. Zhang","doi":"10.1109/EUROSIME.2015.7103077","DOIUrl":null,"url":null,"abstract":"In a highly competitive and demanding microelectronics market, reliable non-destructive methods for quality control and failure analysis of electronic components are highly demanded. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies such as chip-scale packages and 3D IC stacks. Scanning acoustic microscopy (SAM) is indeed one the best non-destructive tools for failure analysis purposes. It is also a useful technique for imaging the morphology, location and size distribution of defects in different microelectronics components. SAM can detect delaminations at sub-micron thicknesses. It is also one of the only available techniques capable of efficiently evaluating popcorning in PBGA's and is a also useful device to detect sub-micron air gaps. SAM can also be used to measure the thickness of an internal layer of material. Overall, SAM is an efficient tool for evaluating such a wide range of different defects in printed circuit boards, underfills, BGAs, wire bonds, discrete components, and wafers. In SAM a focused sound is directed from a transducer at a small point on a target object, as is schematically shown here. Sound, hitting a defect, inhomogeneity or a boundary inside material, is partly scatted and will be detected. The transducer transforms the reflected sound pulses into electromagnetic pulses which are displayed as pixels with defined gray values thereby creating an image. This article aims at giving an overview of scanning acoustic microscope (SAM) and explaining its operating principles and its limitations. A few examples are also given for further clarification.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"An overview of scanning acoustic microscope, a reliable method for non-destructive failure analysis of microelectronic components\",\"authors\":\"M. Yazdan Mehr, A. Bahrami, H. Fischer, S. Gielen, R. Corbeij, W. V. van Driel, G. Zhang\",\"doi\":\"10.1109/EUROSIME.2015.7103077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a highly competitive and demanding microelectronics market, reliable non-destructive methods for quality control and failure analysis of electronic components are highly demanded. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies such as chip-scale packages and 3D IC stacks. Scanning acoustic microscopy (SAM) is indeed one the best non-destructive tools for failure analysis purposes. It is also a useful technique for imaging the morphology, location and size distribution of defects in different microelectronics components. SAM can detect delaminations at sub-micron thicknesses. It is also one of the only available techniques capable of efficiently evaluating popcorning in PBGA's and is a also useful device to detect sub-micron air gaps. SAM can also be used to measure the thickness of an internal layer of material. Overall, SAM is an efficient tool for evaluating such a wide range of different defects in printed circuit boards, underfills, BGAs, wire bonds, discrete components, and wafers. In SAM a focused sound is directed from a transducer at a small point on a target object, as is schematically shown here. Sound, hitting a defect, inhomogeneity or a boundary inside material, is partly scatted and will be detected. The transducer transforms the reflected sound pulses into electromagnetic pulses which are displayed as pixels with defined gray values thereby creating an image. This article aims at giving an overview of scanning acoustic microscope (SAM) and explaining its operating principles and its limitations. A few examples are also given for further clarification.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在竞争激烈和要求苛刻的微电子市场中,对电子元件的质量控制和失效分析的可靠的非破坏性方法提出了很高的要求。任何稳健的非破坏性方法都应该能够处理诸如芯片级封装和3D IC堆栈等小型化组件的复杂性。扫描声学显微镜(SAM)确实是用于失效分析的最佳非破坏性工具之一。它也是成像不同微电子元件中缺陷的形态、位置和尺寸分布的有用技术。SAM可以探测亚微米厚度的分层。它也是目前唯一能够有效评估PBGA中气泡形成的技术之一,也是检测亚微米气隙的有用设备。SAM也可以用来测量材料内层的厚度。总体而言,SAM是一种有效的工具,可用于评估印刷电路板、底部填充物、BGAs、线键、分立元件和晶圆中的各种不同缺陷。在SAM中,聚焦的声音从目标物体上的一个小点的换能器发出,如图所示。声音,击中缺陷,不均匀性或材料内部的边界,部分分散,将被检测到。换能器将反射声脉冲转换为电磁脉冲,电磁脉冲显示为具有定义的灰度值的像素,从而产生图像。本文介绍了扫描声显微镜(SAM)的研究概况,阐述了扫描声显微镜的工作原理及其局限性。为了进一步澄清,还举了几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview of scanning acoustic microscope, a reliable method for non-destructive failure analysis of microelectronic components
In a highly competitive and demanding microelectronics market, reliable non-destructive methods for quality control and failure analysis of electronic components are highly demanded. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies such as chip-scale packages and 3D IC stacks. Scanning acoustic microscopy (SAM) is indeed one the best non-destructive tools for failure analysis purposes. It is also a useful technique for imaging the morphology, location and size distribution of defects in different microelectronics components. SAM can detect delaminations at sub-micron thicknesses. It is also one of the only available techniques capable of efficiently evaluating popcorning in PBGA's and is a also useful device to detect sub-micron air gaps. SAM can also be used to measure the thickness of an internal layer of material. Overall, SAM is an efficient tool for evaluating such a wide range of different defects in printed circuit boards, underfills, BGAs, wire bonds, discrete components, and wafers. In SAM a focused sound is directed from a transducer at a small point on a target object, as is schematically shown here. Sound, hitting a defect, inhomogeneity or a boundary inside material, is partly scatted and will be detected. The transducer transforms the reflected sound pulses into electromagnetic pulses which are displayed as pixels with defined gray values thereby creating an image. This article aims at giving an overview of scanning acoustic microscope (SAM) and explaining its operating principles and its limitations. A few examples are also given for further clarification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient simulation of thermo-mechanical stress in the on-chip metallization of power semiconductors Simulation driven design of novel integrated circuits - Part 1: Selection of the materials based on the Virtual DoE Applications of computational mechanics in stretchable electronics Prediction of package delamination based on μMMT and BST experiments Simulation of a flip chip bonding technique using reactive foils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1