N. Browning, D. Nicholls, J. Wells, Alex W Robinson
{"title":"扫描显微镜的最佳采样和重建策略","authors":"N. Browning, D. Nicholls, J. Wells, Alex W Robinson","doi":"10.31399/asm.edfa.2022-1.p011","DOIUrl":null,"url":null,"abstract":"\n This article discusses the tradeoffs associated with minimizing beam dose in a scanning transmission electron microscope (STEM) and explains how to reduce beam exposure through subsampling and inpainting, a signal reconstruction technique that optimizes image quality and resolution. Although the method is described in the context of STEM imaging, it applies to any scanned imaging system.","PeriodicalId":431761,"journal":{"name":"EDFA Technical Articles","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Sampling and Reconstruction Strategies for Scanning Microscopes\",\"authors\":\"N. Browning, D. Nicholls, J. Wells, Alex W Robinson\",\"doi\":\"10.31399/asm.edfa.2022-1.p011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article discusses the tradeoffs associated with minimizing beam dose in a scanning transmission electron microscope (STEM) and explains how to reduce beam exposure through subsampling and inpainting, a signal reconstruction technique that optimizes image quality and resolution. Although the method is described in the context of STEM imaging, it applies to any scanned imaging system.\",\"PeriodicalId\":431761,\"journal\":{\"name\":\"EDFA Technical Articles\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EDFA Technical Articles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.edfa.2022-1.p011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EDFA Technical Articles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.edfa.2022-1.p011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Sampling and Reconstruction Strategies for Scanning Microscopes
This article discusses the tradeoffs associated with minimizing beam dose in a scanning transmission electron microscope (STEM) and explains how to reduce beam exposure through subsampling and inpainting, a signal reconstruction technique that optimizes image quality and resolution. Although the method is described in the context of STEM imaging, it applies to any scanned imaging system.