静电MEMS执行器的铁电负电容激励驱动电路

Jeffin Shibu, Raghuram Tattamangalam Raman, Abhilash O. S., Arun Kumar, A. Ajoy
{"title":"静电MEMS执行器的铁电负电容激励驱动电路","authors":"Jeffin Shibu, Raghuram Tattamangalam Raman, Abhilash O. S., Arun Kumar, A. Ajoy","doi":"10.1109/ICEE56203.2022.10117695","DOIUrl":null,"url":null,"abstract":"Electrostatic MEMS actuators require high operating voltages. It has been predicted that a ferroelectric negative capacitance connected in series with a MEMS actuator, forming a hybrid actuator, can reduce its operating voltage. We propose a driver circuit that mimics the behaviour of such hybrid actuators. Electrostatic actuators also suffer from pull-in instability, wherein the movable electrode snaps down to hit the bottom electrode beyond a certain applied voltage, called the pull-in voltage. Pull-in instability prohibits the use of entire air-gap for stable operation. We modify the proposed driver circuit to eliminate pull-in, resulting in full-gap travel. Using our topology, we illustrate both non-linear and linear quasi-static response for pull-in free operation. The results obtained using the numerical and circuit simulations and analytical predictions are in good agreement with each other. Thus, the proposed driver circuits can aid in the design of pull-in free electrostatic MEMS actuators.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric Negative Capacitance Inspired Driver Circuits for Electrostatic MEMS Actuators\",\"authors\":\"Jeffin Shibu, Raghuram Tattamangalam Raman, Abhilash O. S., Arun Kumar, A. Ajoy\",\"doi\":\"10.1109/ICEE56203.2022.10117695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrostatic MEMS actuators require high operating voltages. It has been predicted that a ferroelectric negative capacitance connected in series with a MEMS actuator, forming a hybrid actuator, can reduce its operating voltage. We propose a driver circuit that mimics the behaviour of such hybrid actuators. Electrostatic actuators also suffer from pull-in instability, wherein the movable electrode snaps down to hit the bottom electrode beyond a certain applied voltage, called the pull-in voltage. Pull-in instability prohibits the use of entire air-gap for stable operation. We modify the proposed driver circuit to eliminate pull-in, resulting in full-gap travel. Using our topology, we illustrate both non-linear and linear quasi-static response for pull-in free operation. The results obtained using the numerical and circuit simulations and analytical predictions are in good agreement with each other. Thus, the proposed driver circuits can aid in the design of pull-in free electrostatic MEMS actuators.\",\"PeriodicalId\":281727,\"journal\":{\"name\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE56203.2022.10117695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10117695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

静电MEMS致动器需要高工作电压。曾预测将铁电负电容与MEMS致动器串联形成混合致动器可以降低其工作电压。我们提出了一种模拟这种混合执行器行为的驱动电路。静电致动器也有拉入不稳定性,其中活动电极在超过一定的施加电压(称为拉入电压)的情况下撞击底部电极。拉入不稳定性禁止使用整个气隙进行稳定操作。我们修改了提议的驱动电路,以消除拉入,导致全间隙行程。利用我们的拓扑结构,我们说明了无拉入操作的非线性和线性准静态响应。数值模拟和电路仿真结果与分析预测结果吻合较好。因此,所提出的驱动电路可以帮助设计拉入式静电MEMS致动器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferroelectric Negative Capacitance Inspired Driver Circuits for Electrostatic MEMS Actuators
Electrostatic MEMS actuators require high operating voltages. It has been predicted that a ferroelectric negative capacitance connected in series with a MEMS actuator, forming a hybrid actuator, can reduce its operating voltage. We propose a driver circuit that mimics the behaviour of such hybrid actuators. Electrostatic actuators also suffer from pull-in instability, wherein the movable electrode snaps down to hit the bottom electrode beyond a certain applied voltage, called the pull-in voltage. Pull-in instability prohibits the use of entire air-gap for stable operation. We modify the proposed driver circuit to eliminate pull-in, resulting in full-gap travel. Using our topology, we illustrate both non-linear and linear quasi-static response for pull-in free operation. The results obtained using the numerical and circuit simulations and analytical predictions are in good agreement with each other. Thus, the proposed driver circuits can aid in the design of pull-in free electrostatic MEMS actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organic Dye Based Longer Wavelength Photodetector for Narrowband Application Numerical Simulation and Parameter Extraction of Pure Thermionic Emission Across Schottky Contacts Inkjet-printed mesoporous indium oxide-based near-vertical transport thin film transistors and pseudo-CMOS inverters Flash imaging for microfluidics Fabrication and optimization of T -gate for high performance HEMT and MMIC devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1