分析《英雄联盟》中的成功团队行为

Fernando Felix do Nascimento Junior, A. S. C. Melo, Igor Barbosa da Costa, L. Marinho
{"title":"分析《英雄联盟》中的成功团队行为","authors":"Fernando Felix do Nascimento Junior, A. S. C. Melo, Igor Barbosa da Costa, L. Marinho","doi":"10.1145/3126858.3126886","DOIUrl":null,"url":null,"abstract":"Despite the increasing popularity of electronic sports (eSports), there is still a scarcity of academic works exploring the playing behavior of teams. Understanding the features that help to discriminate between successful and unsuccessful teams would help teams improving their strategies, such as determine performance metrics to reach. In this paper, we identify and characterize team behavior patterns based on historical matches from the very popular eSpor League of Legends web API. By applying machine learning and statistical analysis, we clustered teams' performance and investigate for each cluster how and to what extent these features have an influence on teams' success and failure. Some clusters are more likely to have winning teams than others, the results of our study helped to discover the characteristics that are associated with this predisposition and allowed us to model performance metrics of successful and unsuccessful team profiles. At all, we found 7 profiles in which were categorized into four levels in terms of winning team proportion: very low, moderate, high and very high.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Profiling Successful Team Behaviors in League of Legends\",\"authors\":\"Fernando Felix do Nascimento Junior, A. S. C. Melo, Igor Barbosa da Costa, L. Marinho\",\"doi\":\"10.1145/3126858.3126886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the increasing popularity of electronic sports (eSports), there is still a scarcity of academic works exploring the playing behavior of teams. Understanding the features that help to discriminate between successful and unsuccessful teams would help teams improving their strategies, such as determine performance metrics to reach. In this paper, we identify and characterize team behavior patterns based on historical matches from the very popular eSpor League of Legends web API. By applying machine learning and statistical analysis, we clustered teams' performance and investigate for each cluster how and to what extent these features have an influence on teams' success and failure. Some clusters are more likely to have winning teams than others, the results of our study helped to discover the characteristics that are associated with this predisposition and allowed us to model performance metrics of successful and unsuccessful team profiles. At all, we found 7 profiles in which were categorized into four levels in terms of winning team proportion: very low, moderate, high and very high.\",\"PeriodicalId\":338362,\"journal\":{\"name\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3126858.3126886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3126886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

尽管电子竞技(eSports)越来越受欢迎,但探索团队游戏行为的学术作品仍然很少。了解有助于区分成功和不成功团队的特性将有助于团队改进他们的策略,例如确定要达到的性能指标。在本文中,我们基于非常流行的eSpor英雄联盟web API的历史比赛来识别和描述团队行为模式。通过应用机器学习和统计分析,我们对团队的表现进行了聚类,并调查了每个聚类的这些特征如何以及在多大程度上影响了团队的成功和失败。一些集群比其他集群更有可能拥有获胜的团队,我们的研究结果有助于发现与这种倾向相关的特征,并使我们能够建立成功和不成功团队概况的绩效指标模型。总之,我们找到了7个概况,根据获胜团队比例分为四个级别:非常低,中等,高和非常高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Profiling Successful Team Behaviors in League of Legends
Despite the increasing popularity of electronic sports (eSports), there is still a scarcity of academic works exploring the playing behavior of teams. Understanding the features that help to discriminate between successful and unsuccessful teams would help teams improving their strategies, such as determine performance metrics to reach. In this paper, we identify and characterize team behavior patterns based on historical matches from the very popular eSpor League of Legends web API. By applying machine learning and statistical analysis, we clustered teams' performance and investigate for each cluster how and to what extent these features have an influence on teams' success and failure. Some clusters are more likely to have winning teams than others, the results of our study helped to discover the characteristics that are associated with this predisposition and allowed us to model performance metrics of successful and unsuccessful team profiles. At all, we found 7 profiles in which were categorized into four levels in terms of winning team proportion: very low, moderate, high and very high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STorM: A Hypermedia Authoring Model for Interactive Digital Out-of-Home Media Distributed Data Clustering in the Context of the Internet of Things: A Data Traffic Reduction Approach AnyLanguage-To-LIBRAS: Evaluation of an Machine Translation Service of Any Oralized Language for the Brazilian Sign Language Adaptive Sensing Relevance Exploiting Social Media Mining in Smart Cities Automatic Text Recognition in Web Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1