感应电动机降低开关频率的多步模型预测控制

Qingxuan Wang, Yunpeng Zhang, Haidong Cao, Qing Bi
{"title":"感应电动机降低开关频率的多步模型预测控制","authors":"Qingxuan Wang, Yunpeng Zhang, Haidong Cao, Qing Bi","doi":"10.1109/SPIES55999.2022.10082122","DOIUrl":null,"url":null,"abstract":"A multistep model predictive current control strategy for reducing the switching frequency of inverters is proposed to address the challenges of low energy efficiency of small power induction motors. Based on the discrete mathematical model of the motor drive system, the strategy extends the current trajectory corresponding to each allowable switching sequence employing iterative prediction with quadratic interpolation, and uses average switching frequency within the predicted range as a cost function. In order to acquire the ideal switching vector in real-time, the cost function conducts online rolling optimization. Compared to model predictive direct current control, this method can reduce the average switching frequency of the two-level inverter while enhancing current harmonic performance. The simulation results verify the efficiency of the proposed method.","PeriodicalId":412421,"journal":{"name":"2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistep Model Predictive Control of Induction Motors for Reducing Switching Frequency\",\"authors\":\"Qingxuan Wang, Yunpeng Zhang, Haidong Cao, Qing Bi\",\"doi\":\"10.1109/SPIES55999.2022.10082122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multistep model predictive current control strategy for reducing the switching frequency of inverters is proposed to address the challenges of low energy efficiency of small power induction motors. Based on the discrete mathematical model of the motor drive system, the strategy extends the current trajectory corresponding to each allowable switching sequence employing iterative prediction with quadratic interpolation, and uses average switching frequency within the predicted range as a cost function. In order to acquire the ideal switching vector in real-time, the cost function conducts online rolling optimization. Compared to model predictive direct current control, this method can reduce the average switching frequency of the two-level inverter while enhancing current harmonic performance. The simulation results verify the efficiency of the proposed method.\",\"PeriodicalId\":412421,\"journal\":{\"name\":\"2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIES55999.2022.10082122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIES55999.2022.10082122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对小功率异步电机能效低的问题,提出了一种降低逆变器开关频率的多步模型预测电流控制策略。该策略基于电机驱动系统的离散数学模型,采用二次插值迭代预测方法扩展各允许开关序列对应的电流轨迹,并以预测范围内的平均开关频率作为代价函数。为了实时获取理想的切换向量,代价函数进行在线滚动优化。与模型预测直流控制相比,该方法可以降低两电平逆变器的平均开关频率,同时提高电流谐波性能。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistep Model Predictive Control of Induction Motors for Reducing Switching Frequency
A multistep model predictive current control strategy for reducing the switching frequency of inverters is proposed to address the challenges of low energy efficiency of small power induction motors. Based on the discrete mathematical model of the motor drive system, the strategy extends the current trajectory corresponding to each allowable switching sequence employing iterative prediction with quadratic interpolation, and uses average switching frequency within the predicted range as a cost function. In order to acquire the ideal switching vector in real-time, the cost function conducts online rolling optimization. Compared to model predictive direct current control, this method can reduce the average switching frequency of the two-level inverter while enhancing current harmonic performance. The simulation results verify the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Sliding Mode Control Scheme for T-type Rectifier Based on Deadbeat Control Variable-Weight Model Predictive Modulation Strategy for A Si-SiC Cascaded H-Bridge Inverter Probabilistic Planning of Transmission Network Considering Operational Flexibility of Power System Analysis and Design of EMI Filter Based on Differential Mode Inductor Magnetic Integration Hierarchical Dispatch of Multi-terminal HVDC Transmission System Considering Flexibility Retrofits of Sending-end Thermal Power Units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1