Chi-Yuan Liu, H. Chiang, Yao-Wen Chang, J. H. Jiang
{"title":"同时极紫外光耀斑变化最小化和耦合感知伪化的CMP控制","authors":"Chi-Yuan Liu, H. Chiang, Yao-Wen Chang, J. H. Jiang","doi":"10.1145/2593069.2593215","DOIUrl":null,"url":null,"abstract":"EUV flare and CMP metal thickness are two main manufacturability concerns for nanometer process technology. The two dummification objectives, however, are conflicting with each other in nature, but existing works only tackle them separately, leading to problem-prone solutions because optimizing one would deteriorate the other. This paper presents the first work that simultaneously considers both concerns during manufacturability optimization. Given a system's point spread function, our proposed method first finds an initial solution with better-than-state-of-the-art EUV flare uniformity, then followed by gradient-guided optimization to iteratively refine density uniformity. Experimental results show the effectiveness of our method.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simultaneous EUV flare variation minimization and CMP control with coupling-aware dummification\",\"authors\":\"Chi-Yuan Liu, H. Chiang, Yao-Wen Chang, J. H. Jiang\",\"doi\":\"10.1145/2593069.2593215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EUV flare and CMP metal thickness are two main manufacturability concerns for nanometer process technology. The two dummification objectives, however, are conflicting with each other in nature, but existing works only tackle them separately, leading to problem-prone solutions because optimizing one would deteriorate the other. This paper presents the first work that simultaneously considers both concerns during manufacturability optimization. Given a system's point spread function, our proposed method first finds an initial solution with better-than-state-of-the-art EUV flare uniformity, then followed by gradient-guided optimization to iteratively refine density uniformity. Experimental results show the effectiveness of our method.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous EUV flare variation minimization and CMP control with coupling-aware dummification
EUV flare and CMP metal thickness are two main manufacturability concerns for nanometer process technology. The two dummification objectives, however, are conflicting with each other in nature, but existing works only tackle them separately, leading to problem-prone solutions because optimizing one would deteriorate the other. This paper presents the first work that simultaneously considers both concerns during manufacturability optimization. Given a system's point spread function, our proposed method first finds an initial solution with better-than-state-of-the-art EUV flare uniformity, then followed by gradient-guided optimization to iteratively refine density uniformity. Experimental results show the effectiveness of our method.