E. Benhamou, J. Ohana, D. Saltiel, B. Guez, S. Ohana
{"title":"可解释人工智能(XAI)模型在金融市场规划中的应用","authors":"E. Benhamou, J. Ohana, D. Saltiel, B. Guez, S. Ohana","doi":"10.2139/ssrn.3862437","DOIUrl":null,"url":null,"abstract":"Regime changes planning in financial markets is well known to be hard to explain and interpret. Can an asset manager ex-plain clearly the intuition of his regime changes prediction on equity market ? To answer this question, we consider a gradi-ent boosting decision trees (GBDT) approach to plan regime changes on S&P 500 from a set of 150 technical, fundamen-tal and macroeconomic features. We report an improved ac-curacy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been intro-duced from game theory to the field of ML. This approach allows a robust identification of the most important variables planning stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model of-fered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Explainable AI (XAI) Models Applied to Planning in Financial Markets\",\"authors\":\"E. Benhamou, J. Ohana, D. Saltiel, B. Guez, S. Ohana\",\"doi\":\"10.2139/ssrn.3862437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regime changes planning in financial markets is well known to be hard to explain and interpret. Can an asset manager ex-plain clearly the intuition of his regime changes prediction on equity market ? To answer this question, we consider a gradi-ent boosting decision trees (GBDT) approach to plan regime changes on S&P 500 from a set of 150 technical, fundamen-tal and macroeconomic features. We report an improved ac-curacy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been intro-duced from game theory to the field of ML. This approach allows a robust identification of the most important variables planning stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model of-fered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3862437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3862437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explainable AI (XAI) Models Applied to Planning in Financial Markets
Regime changes planning in financial markets is well known to be hard to explain and interpret. Can an asset manager ex-plain clearly the intuition of his regime changes prediction on equity market ? To answer this question, we consider a gradi-ent boosting decision trees (GBDT) approach to plan regime changes on S&P 500 from a set of 150 technical, fundamen-tal and macroeconomic features. We report an improved ac-curacy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been intro-duced from game theory to the field of ML. This approach allows a robust identification of the most important variables planning stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model of-fered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.