可解释人工智能(XAI)模型在金融市场规划中的应用

E. Benhamou, J. Ohana, D. Saltiel, B. Guez, S. Ohana
{"title":"可解释人工智能(XAI)模型在金融市场规划中的应用","authors":"E. Benhamou, J. Ohana, D. Saltiel, B. Guez, S. Ohana","doi":"10.2139/ssrn.3862437","DOIUrl":null,"url":null,"abstract":"Regime changes planning in financial markets is well known to be hard to explain and interpret. Can an asset manager ex-plain clearly the intuition of his regime changes prediction on equity market ? To answer this question, we consider a gradi-ent boosting decision trees (GBDT) approach to plan regime changes on S&P 500 from a set of 150 technical, fundamen-tal and macroeconomic features. We report an improved ac-curacy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been intro-duced from game theory to the field of ML. This approach allows a robust identification of the most important variables planning stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model of-fered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Explainable AI (XAI) Models Applied to Planning in Financial Markets\",\"authors\":\"E. Benhamou, J. Ohana, D. Saltiel, B. Guez, S. Ohana\",\"doi\":\"10.2139/ssrn.3862437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regime changes planning in financial markets is well known to be hard to explain and interpret. Can an asset manager ex-plain clearly the intuition of his regime changes prediction on equity market ? To answer this question, we consider a gradi-ent boosting decision trees (GBDT) approach to plan regime changes on S&P 500 from a set of 150 technical, fundamen-tal and macroeconomic features. We report an improved ac-curacy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been intro-duced from game theory to the field of ML. This approach allows a robust identification of the most important variables planning stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model of-fered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3862437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3862437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,金融市场的制度变化和规划很难解释。一个资产管理公司能否清楚地解释他的直觉会改变对股市的预测?为了回答这个问题,我们考虑了一种梯度增强决策树(GBDT)方法,从一组150个技术、基本和宏观经济特征中规划标准普尔500指数的制度变化。我们报告了GBDT在标准普尔500指数期货价格上比其他机器学习(ML)方法的准确性有所提高。我们表明,保留更少和精心选择的功能可以改善所有ML方法。Shapley值最近被从博弈论引入到机器学习领域。这种方法允许对规划股市危机的最重要变量进行稳健识别,并通过一致的特征归因对每个日期的危机概率进行局部解释。我们应用这种方法详细分析了2020年3月的金融危机,该模型及时提供了样本外预测。这一分析特别揭示了科技股行业在崩盘前后的反向预测作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explainable AI (XAI) Models Applied to Planning in Financial Markets
Regime changes planning in financial markets is well known to be hard to explain and interpret. Can an asset manager ex-plain clearly the intuition of his regime changes prediction on equity market ? To answer this question, we consider a gradi-ent boosting decision trees (GBDT) approach to plan regime changes on S&P 500 from a set of 150 technical, fundamen-tal and macroeconomic features. We report an improved ac-curacy of GBDT over other machine learning (ML) methods on the S&P 500 futures prices. We show that retaining fewer and carefully selected features provides improvements across all ML approaches. Shapley values have recently been intro-duced from game theory to the field of ML. This approach allows a robust identification of the most important variables planning stock market crises, and of a local explanation of the crisis probability at each date, through a consistent features attribution. We apply this methodology to analyse in detail the March 2020 financial meltdown, for which the model of-fered a timely out of sample prediction. This analysis unveils in particular the contrarian predictive role of the tech equity sector before and after the crash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1