通过源级分析和基于跟踪的仿真实现快速准确GPU性能估计的混合框架

Xiebing Wang, Kai Huang, A. Knoll, Xuehai Qian
{"title":"通过源级分析和基于跟踪的仿真实现快速准确GPU性能估计的混合框架","authors":"Xiebing Wang, Kai Huang, A. Knoll, Xuehai Qian","doi":"10.1109/HPCA.2019.00062","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid framework for fast and accurate performance estimation of OpenCL kernels running on GPUs. The kernel execution flow is statically analyzed and thereupon the execution trace is generated via a loop-based bidirectional branch search. Then the trace is dynamically simulated to perform a dummy execution of the kernel to obtain the estimated time. The framework does not rely on profiling or measurement results which are used in conventional performance estimation techniques. Moreover, the lightweight trace-based simulation consumes much less time than a fine-grained GPU simulator. Our framework can accurately grasp the variation trend of the execution time in the design space and robustly predict the performance of the kernels across two generations of recent Nvidia GPU architectures. Experiments on four Commercial Off-The-Shelf (COTS) GPUs show that our framework can predict the runtime performance with average Mean Absolute Percentage Error (MAPE) of 17.04% and time consumption of a few seconds. We also demonstrate the practicability of our framework with a realworld application.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Hybrid Framework for Fast and Accurate GPU Performance Estimation through Source-Level Analysis and Trace-Based Simulation\",\"authors\":\"Xiebing Wang, Kai Huang, A. Knoll, Xuehai Qian\",\"doi\":\"10.1109/HPCA.2019.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a hybrid framework for fast and accurate performance estimation of OpenCL kernels running on GPUs. The kernel execution flow is statically analyzed and thereupon the execution trace is generated via a loop-based bidirectional branch search. Then the trace is dynamically simulated to perform a dummy execution of the kernel to obtain the estimated time. The framework does not rely on profiling or measurement results which are used in conventional performance estimation techniques. Moreover, the lightweight trace-based simulation consumes much less time than a fine-grained GPU simulator. Our framework can accurately grasp the variation trend of the execution time in the design space and robustly predict the performance of the kernels across two generations of recent Nvidia GPU architectures. Experiments on four Commercial Off-The-Shelf (COTS) GPUs show that our framework can predict the runtime performance with average Mean Absolute Percentage Error (MAPE) of 17.04% and time consumption of a few seconds. We also demonstrate the practicability of our framework with a realworld application.\",\"PeriodicalId\":102050,\"journal\":{\"name\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2019.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一个混合框架,用于快速准确地估计在gpu上运行的OpenCL内核的性能。对内核执行流进行静态分析,然后通过基于循环的双向分支搜索生成执行跟踪。然后动态模拟跟踪以执行内核的虚拟执行以获得估计的时间。该框架不依赖于传统性能评估技术中使用的分析或测量结果。此外,轻量级的基于跟踪的模拟比细粒度的GPU模拟器消耗的时间要少得多。我们的框架能够准确把握设计空间内执行时间的变化趋势,稳健地预测两代Nvidia最新GPU架构的内核性能。在4个商用gpu上的实验表明,我们的框架可以预测运行时性能,平均绝对百分比误差(MAPE)为17.04%,时间消耗为几秒。我们还通过一个实际应用程序演示了我们的框架的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Framework for Fast and Accurate GPU Performance Estimation through Source-Level Analysis and Trace-Based Simulation
This paper proposes a hybrid framework for fast and accurate performance estimation of OpenCL kernels running on GPUs. The kernel execution flow is statically analyzed and thereupon the execution trace is generated via a loop-based bidirectional branch search. Then the trace is dynamically simulated to perform a dummy execution of the kernel to obtain the estimated time. The framework does not rely on profiling or measurement results which are used in conventional performance estimation techniques. Moreover, the lightweight trace-based simulation consumes much less time than a fine-grained GPU simulator. Our framework can accurately grasp the variation trend of the execution time in the design space and robustly predict the performance of the kernels across two generations of recent Nvidia GPU architectures. Experiments on four Commercial Off-The-Shelf (COTS) GPUs show that our framework can predict the runtime performance with average Mean Absolute Percentage Error (MAPE) of 17.04% and time consumption of a few seconds. We also demonstrate the practicability of our framework with a realworld application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1