面向HPC的可伸缩和异步对象中心数据管理

Houjun Tang, S. Byna, François Tessier, Teng Wang, Bin Dong, Jingqing Mu, Q. Koziol, Jérome Soumagne, V. Vishwanath, Jialin Liu, R. Warren
{"title":"面向HPC的可伸缩和异步对象中心数据管理","authors":"Houjun Tang, S. Byna, François Tessier, Teng Wang, Bin Dong, Jingqing Mu, Q. Koziol, Jérome Soumagne, V. Vishwanath, Jialin Liu, R. Warren","doi":"10.1109/CCGRID.2018.00026","DOIUrl":null,"url":null,"abstract":"Emerging high performance computing (HPC) systems are expected to be deployed with an unprecedented level of complexity due to a deep system memory and storage hierarchy. Efficient and scalable methods of data management and movement through this hierarchy is critical for scientific applications using exascale systems. Moving toward new paradigms for scalable I/O in the extreme-scale era, we introduce novel object-centric data abstractions and storage mechanisms that take advantage of the deep storage hierarchy, named Proactive Data Containers (PDC). In this paper, we formulate object-centric PDCs and their mappings in different levels of the storage hierarchy. PDC adopts a client-server architecture with a set of servers managing data movement across storage layers. To demonstrate the effectiveness of the proposed PDC system, we have measured performance of benchmarks and I/O kernels from scientific simulation and analysis applications using PDC programming interface, and compared the results with existing highly tuned I/O libraries. Using asynchronous I/O along with data and metadata optimizations, PDC demonstrates up to 23× speedup over HDF5 and PLFS in writing and reading data from a plasma physics simulation. PDC achieves comparable performance with HDF5 and PLFS in reading and writing data of a single timestep at small scale, and outperforms them at a scale of larger than 10K cores. In contrast to existing storage systems, PDC offers user-space data management with the flexibility to allocate the number of PDC servers depending on the workload.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Toward Scalable and Asynchronous Object-Centric Data Management for HPC\",\"authors\":\"Houjun Tang, S. Byna, François Tessier, Teng Wang, Bin Dong, Jingqing Mu, Q. Koziol, Jérome Soumagne, V. Vishwanath, Jialin Liu, R. Warren\",\"doi\":\"10.1109/CCGRID.2018.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging high performance computing (HPC) systems are expected to be deployed with an unprecedented level of complexity due to a deep system memory and storage hierarchy. Efficient and scalable methods of data management and movement through this hierarchy is critical for scientific applications using exascale systems. Moving toward new paradigms for scalable I/O in the extreme-scale era, we introduce novel object-centric data abstractions and storage mechanisms that take advantage of the deep storage hierarchy, named Proactive Data Containers (PDC). In this paper, we formulate object-centric PDCs and their mappings in different levels of the storage hierarchy. PDC adopts a client-server architecture with a set of servers managing data movement across storage layers. To demonstrate the effectiveness of the proposed PDC system, we have measured performance of benchmarks and I/O kernels from scientific simulation and analysis applications using PDC programming interface, and compared the results with existing highly tuned I/O libraries. Using asynchronous I/O along with data and metadata optimizations, PDC demonstrates up to 23× speedup over HDF5 and PLFS in writing and reading data from a plasma physics simulation. PDC achieves comparable performance with HDF5 and PLFS in reading and writing data of a single timestep at small scale, and outperforms them at a scale of larger than 10K cores. In contrast to existing storage systems, PDC offers user-space data management with the flexibility to allocate the number of PDC servers depending on the workload.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

由于系统内存和存储层次结构较深,新兴的高性能计算(HPC)系统预计将以前所未有的复杂性部署。高效和可扩展的数据管理方法以及通过该层次结构的移动对于使用百亿亿级系统的科学应用程序至关重要。在极端规模时代,为了实现可扩展I/O的新范式,我们引入了新的以对象为中心的数据抽象和存储机制,这些机制利用了深度存储层次结构,称为主动数据容器(PDC)。在本文中,我们制定了以对象为中心的pdc及其在不同存储层次中的映射。PDC采用客户机-服务器架构,由一组服务器管理跨存储层的数据移动。为了证明所提出的PDC系统的有效性,我们使用PDC编程接口测量了来自科学模拟和分析应用程序的基准测试和I/O内核的性能,并将结果与现有的高度调优的I/O库进行了比较。PDC使用异步I/O以及数据和元数据优化,在从等离子体物理模拟中写入和读取数据时,速度比HDF5和PLFS提高了23倍。PDC在小尺度下单时间步长的数据读写性能与HDF5和PLFS相当,在大于10K核的规模下性能优于HDF5和PLFS。与现有的存储系统相比,PDC提供用户空间的数据管理,可以根据工作负载灵活地分配PDC服务器的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Scalable and Asynchronous Object-Centric Data Management for HPC
Emerging high performance computing (HPC) systems are expected to be deployed with an unprecedented level of complexity due to a deep system memory and storage hierarchy. Efficient and scalable methods of data management and movement through this hierarchy is critical for scientific applications using exascale systems. Moving toward new paradigms for scalable I/O in the extreme-scale era, we introduce novel object-centric data abstractions and storage mechanisms that take advantage of the deep storage hierarchy, named Proactive Data Containers (PDC). In this paper, we formulate object-centric PDCs and their mappings in different levels of the storage hierarchy. PDC adopts a client-server architecture with a set of servers managing data movement across storage layers. To demonstrate the effectiveness of the proposed PDC system, we have measured performance of benchmarks and I/O kernels from scientific simulation and analysis applications using PDC programming interface, and compared the results with existing highly tuned I/O libraries. Using asynchronous I/O along with data and metadata optimizations, PDC demonstrates up to 23× speedup over HDF5 and PLFS in writing and reading data from a plasma physics simulation. PDC achieves comparable performance with HDF5 and PLFS in reading and writing data of a single timestep at small scale, and outperforms them at a scale of larger than 10K cores. In contrast to existing storage systems, PDC offers user-space data management with the flexibility to allocate the number of PDC servers depending on the workload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1