对偶纯追求的最优规避*

Alexander Von Moll, Zachariah E. Fuchs, M. Pachter
{"title":"对偶纯追求的最优规避*","authors":"Alexander Von Moll, Zachariah E. Fuchs, M. Pachter","doi":"10.23919/ACC45564.2020.9147776","DOIUrl":null,"url":null,"abstract":"The Pure Pursuit strategy is ubiquitous both in the control literature but also in real-world implementation. In this paper, we pose and solve a variant of Isaacs’ Two Cutters and Fugitive Ship problem wherein the Pursuers’ strategy is fixed to Pure Pursuit, thus making it an optimal control problem. The Pursuers are faster than the Evader and are endowed with a finite capture radius. All agents move with constant velocity and can change heading instantaneously. Although capture is inevitable, the Evader wishes to delay capture as long as possible. The optimal trajectories cover the entire state space. Regions corresponding to either solo capture or isochronous (dual) capture are computed and both types of maximal time-to-capture optimal trajectories are characterized.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Evasion Against Dual Pure Pursuit *\",\"authors\":\"Alexander Von Moll, Zachariah E. Fuchs, M. Pachter\",\"doi\":\"10.23919/ACC45564.2020.9147776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pure Pursuit strategy is ubiquitous both in the control literature but also in real-world implementation. In this paper, we pose and solve a variant of Isaacs’ Two Cutters and Fugitive Ship problem wherein the Pursuers’ strategy is fixed to Pure Pursuit, thus making it an optimal control problem. The Pursuers are faster than the Evader and are endowed with a finite capture radius. All agents move with constant velocity and can change heading instantaneously. Although capture is inevitable, the Evader wishes to delay capture as long as possible. The optimal trajectories cover the entire state space. Regions corresponding to either solo capture or isochronous (dual) capture are computed and both types of maximal time-to-capture optimal trajectories are characterized.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9147776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

纯追求策略在控制文献和现实世界的实现中都无处不在。在本文中,我们提出并求解了艾萨克的两截船和逃亡船问题的一个变体,其中追求者的策略被固定为纯追逐,从而使其成为一个最优控制问题。追踪者比逃避者速度更快,并且被赋予了有限的捕获半径。所有的智能体都以恒定的速度移动,并且可以瞬间改变方向。虽然捕获是不可避免的,但逃避者希望尽可能地延迟捕获。最优轨迹覆盖整个状态空间。计算了单独捕获或等时(双重)捕获对应的区域,并对两种类型的最大捕获时间最优轨迹进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Evasion Against Dual Pure Pursuit *
The Pure Pursuit strategy is ubiquitous both in the control literature but also in real-world implementation. In this paper, we pose and solve a variant of Isaacs’ Two Cutters and Fugitive Ship problem wherein the Pursuers’ strategy is fixed to Pure Pursuit, thus making it an optimal control problem. The Pursuers are faster than the Evader and are endowed with a finite capture radius. All agents move with constant velocity and can change heading instantaneously. Although capture is inevitable, the Evader wishes to delay capture as long as possible. The optimal trajectories cover the entire state space. Regions corresponding to either solo capture or isochronous (dual) capture are computed and both types of maximal time-to-capture optimal trajectories are characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1