室内定位的核Fisher判别分析

Nhan Vo Than Ngo, Kyung Yong Park, J. G. Kim
{"title":"室内定位的核Fisher判别分析","authors":"Nhan Vo Than Ngo, Kyung Yong Park, J. G. Kim","doi":"10.7236/IJASC.2015.4.2.177","DOIUrl":null,"url":null,"abstract":"In this paper we introduce Kernel Fisher Discriminant Analysis (KFDA) to transform our database of received signal strength (RSS) measurements into a smaller dimension space to maximize the difference between reference points (RP) as possible. By KFDA, we can efficiently utilize RSS data than other method so that we can achieve a better performance.","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel Fisher Discriminant Analysis for Indoor Localization\",\"authors\":\"Nhan Vo Than Ngo, Kyung Yong Park, J. G. Kim\",\"doi\":\"10.7236/IJASC.2015.4.2.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce Kernel Fisher Discriminant Analysis (KFDA) to transform our database of received signal strength (RSS) measurements into a smaller dimension space to maximize the difference between reference points (RP) as possible. By KFDA, we can efficiently utilize RSS data than other method so that we can achieve a better performance.\",\"PeriodicalId\":297506,\"journal\":{\"name\":\"The International Journal of Advanced Smart Convergence\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Advanced Smart Convergence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7236/IJASC.2015.4.2.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2015.4.2.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入核费雪判别分析(Kernel Fisher Discriminant Analysis, KFDA),将我们的接收信号强度(RSS)测量数据库转换到一个更小的维度空间,以尽可能最大化参考点(RP)之间的差异。通过KFDA,我们可以比其他方法更有效地利用RSS数据,从而获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel Fisher Discriminant Analysis for Indoor Localization
In this paper we introduce Kernel Fisher Discriminant Analysis (KFDA) to transform our database of received signal strength (RSS) measurements into a smaller dimension space to maximize the difference between reference points (RP) as possible. By KFDA, we can efficiently utilize RSS data than other method so that we can achieve a better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design for Automation System for Pharmaceutical Prescription Using Arduino and Optical Character Recognition A Study on the Contents Security Management Model for Multi-platform Users A Study on the meaning of work and job embeddedness affecting the creative behavior of organization members The Structural Relationship among Selection Attributes, Consumption Value Brand Attitude, Fun, Brand Loyalty and Quality of Life in Athleisure Improved BP-NN Controller of PMSM for Speed Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1