认知压力识别

Taylor K. Calibo, Justin A. Blanco, S. Firebaugh
{"title":"认知压力识别","authors":"Taylor K. Calibo, Justin A. Blanco, S. Firebaugh","doi":"10.1109/I2MTC.2013.6555658","DOIUrl":null,"url":null,"abstract":"This work explores using a low-cost electroencephalography (EEG) headset to quantify the human response to stressed and non-stressed states. We used a Stroop color-word interference test to elicit a mild stress response in 18 test subjects while recording scalp EEG. EEG signals were analyzed using an algorithm that computed the root mean square voltage in the beta, alpha, and theta bands immediately following the presentation of the Stroop stimuli. These features were then used as inputs to logistic regression and k-nearest neighbor classifiers. Results showed that there was a median accuracy of 73.96% for classifying mental state using the O1 sensor on the Emotiv headset.","PeriodicalId":432388,"journal":{"name":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Cognitive stress recognition\",\"authors\":\"Taylor K. Calibo, Justin A. Blanco, S. Firebaugh\",\"doi\":\"10.1109/I2MTC.2013.6555658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores using a low-cost electroencephalography (EEG) headset to quantify the human response to stressed and non-stressed states. We used a Stroop color-word interference test to elicit a mild stress response in 18 test subjects while recording scalp EEG. EEG signals were analyzed using an algorithm that computed the root mean square voltage in the beta, alpha, and theta bands immediately following the presentation of the Stroop stimuli. These features were then used as inputs to logistic regression and k-nearest neighbor classifiers. Results showed that there was a median accuracy of 73.96% for classifying mental state using the O1 sensor on the Emotiv headset.\",\"PeriodicalId\":432388,\"journal\":{\"name\":\"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2013.6555658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2013.6555658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

这项工作探索使用低成本脑电图(EEG)耳机来量化人类对压力和非压力状态的反应。在记录头皮脑电图的同时,采用Stroop色词干扰测试诱发18名被试的轻度应激反应。在Stroop刺激出现后,使用计算β、α和θ波段均方根电压的算法分析脑电图信号。然后将这些特征用作逻辑回归和k近邻分类器的输入。结果表明,使用Emotiv头戴式耳机上的O1传感器对精神状态进行分类的中位数准确率为73.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cognitive stress recognition
This work explores using a low-cost electroencephalography (EEG) headset to quantify the human response to stressed and non-stressed states. We used a Stroop color-word interference test to elicit a mild stress response in 18 test subjects while recording scalp EEG. EEG signals were analyzed using an algorithm that computed the root mean square voltage in the beta, alpha, and theta bands immediately following the presentation of the Stroop stimuli. These features were then used as inputs to logistic regression and k-nearest neighbor classifiers. Results showed that there was a median accuracy of 73.96% for classifying mental state using the O1 sensor on the Emotiv headset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face based recognition algorithms: The use of uncertainty in the classification Estimation and analysis of communication service time in a real-time wireless industrial network Analytic redundance applied to the relay-connected instrumentation of electric power distribution substations Hierarchical sparse learning for load forecasting in cyber-physical energy systems Microwave conductance of semicontinuous metallic films from coplanar waveguide scattering parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1