H. Sapra, Youri Linden, W. V. Sluijs, M. Godjevac, K. Visser
{"title":"船用氢-天然气发动机试验研究","authors":"H. Sapra, Youri Linden, W. V. Sluijs, M. Godjevac, K. Visser","doi":"10.1115/ICEF2018-9615","DOIUrl":null,"url":null,"abstract":"A novel ship propulsion concept employs natural gas to reduce ship emissions and improve overall ship propulsion efficiency. This concept proposes a serial integration of Solid Oxide Fuel Cell (SOFC) and a natural gas engine, while anode-off gas (gas at the fuel cell exhaust) is used in the natural gas engine. This study focusses on SOFC-gas engine integration by experimentally analyzing the effects of adding hydrogen, which is the main combustible component of the fuel cell anode-off gas, in marine natural gas engines. The overall challenge is to employ the anode-off gas to improve the performance of marine natural gas engines. To study the effects of anode-off gas combustion in natural gas engines, experiments with hydrogen addition in a marine natural gas engine of 500 kW rated power were performed. Natural gas was replaced with 10 % and 20 % of hydrogen, by volume, without any penalties in terms of output power.\n We found that the high combustion rate of hydrogen improved combustion stability, which allowed for better air-excess ratio control. Thus allowing leaning to higher air-excess ratios and extending the, otherwise, limited operating window. Hydrogen addition also improved brake thermal efficiency by 1.2 %, while keeping NOx emissions below the maritime emission regulations. The improvement in engine efficiency with a larger operating window may help improve the load-taking capabilities of marine natural gas engines.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental Investigations of Hydrogen-Natural Gas Engines for Maritime Applications\",\"authors\":\"H. Sapra, Youri Linden, W. V. Sluijs, M. Godjevac, K. Visser\",\"doi\":\"10.1115/ICEF2018-9615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel ship propulsion concept employs natural gas to reduce ship emissions and improve overall ship propulsion efficiency. This concept proposes a serial integration of Solid Oxide Fuel Cell (SOFC) and a natural gas engine, while anode-off gas (gas at the fuel cell exhaust) is used in the natural gas engine. This study focusses on SOFC-gas engine integration by experimentally analyzing the effects of adding hydrogen, which is the main combustible component of the fuel cell anode-off gas, in marine natural gas engines. The overall challenge is to employ the anode-off gas to improve the performance of marine natural gas engines. To study the effects of anode-off gas combustion in natural gas engines, experiments with hydrogen addition in a marine natural gas engine of 500 kW rated power were performed. Natural gas was replaced with 10 % and 20 % of hydrogen, by volume, without any penalties in terms of output power.\\n We found that the high combustion rate of hydrogen improved combustion stability, which allowed for better air-excess ratio control. Thus allowing leaning to higher air-excess ratios and extending the, otherwise, limited operating window. Hydrogen addition also improved brake thermal efficiency by 1.2 %, while keeping NOx emissions below the maritime emission regulations. The improvement in engine efficiency with a larger operating window may help improve the load-taking capabilities of marine natural gas engines.\",\"PeriodicalId\":441369,\"journal\":{\"name\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Investigations of Hydrogen-Natural Gas Engines for Maritime Applications
A novel ship propulsion concept employs natural gas to reduce ship emissions and improve overall ship propulsion efficiency. This concept proposes a serial integration of Solid Oxide Fuel Cell (SOFC) and a natural gas engine, while anode-off gas (gas at the fuel cell exhaust) is used in the natural gas engine. This study focusses on SOFC-gas engine integration by experimentally analyzing the effects of adding hydrogen, which is the main combustible component of the fuel cell anode-off gas, in marine natural gas engines. The overall challenge is to employ the anode-off gas to improve the performance of marine natural gas engines. To study the effects of anode-off gas combustion in natural gas engines, experiments with hydrogen addition in a marine natural gas engine of 500 kW rated power were performed. Natural gas was replaced with 10 % and 20 % of hydrogen, by volume, without any penalties in terms of output power.
We found that the high combustion rate of hydrogen improved combustion stability, which allowed for better air-excess ratio control. Thus allowing leaning to higher air-excess ratios and extending the, otherwise, limited operating window. Hydrogen addition also improved brake thermal efficiency by 1.2 %, while keeping NOx emissions below the maritime emission regulations. The improvement in engine efficiency with a larger operating window may help improve the load-taking capabilities of marine natural gas engines.