Damköhler臭氧对内燃机自燃和火焰传播影响的数值分析

SeungHwan Keum, T. Kuo
{"title":"Damköhler臭氧对内燃机自燃和火焰传播影响的数值分析","authors":"SeungHwan Keum, T. Kuo","doi":"10.1115/ICEF2018-9559","DOIUrl":null,"url":null,"abstract":"Ozone assisted combustion has shown promise in stabilizing combustion and extending operating range of internal combustion engines. However, it has been reported that sensitivity of ozone quantity on combustion varies significantly dependent on combustion modes. For example, auto-ignition driv3en combustion in homogeneous charge compression ignition (HCCI) engine was found to be highly sensitive to the ozone concentration, and up to 100 PPM was found to be sufficient to promote combustion. On the other hand, flame propagation in spark-ignited (SI) engine has been reported to be much less sensitive to the ozone amount, requiring ozone concentration about 3000∼6000 PPM to realize any benefit in the flame speed. A better understanding on the ozone sensitivity is required for combustion device design with ozone addition. In this study, a Damköhler number analysis was performed to analyze the vast difference in the ozone sensitivity between auto-ignition and flame propagation. The analysis showed that, for ozone to be effective in flame propagation, the contribution of ozone on chemistry should be large enough to overcome the diffused radical from the oxidation layer. It is expected that similar analysis will be applicable to any additives to provide an understanding of their effect.","PeriodicalId":441369,"journal":{"name":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damköhler Number Analysis on the Effect of Ozone on Auto-Ignition and Flame Propagation in Internal Combustion Engines\",\"authors\":\"SeungHwan Keum, T. Kuo\",\"doi\":\"10.1115/ICEF2018-9559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ozone assisted combustion has shown promise in stabilizing combustion and extending operating range of internal combustion engines. However, it has been reported that sensitivity of ozone quantity on combustion varies significantly dependent on combustion modes. For example, auto-ignition driv3en combustion in homogeneous charge compression ignition (HCCI) engine was found to be highly sensitive to the ozone concentration, and up to 100 PPM was found to be sufficient to promote combustion. On the other hand, flame propagation in spark-ignited (SI) engine has been reported to be much less sensitive to the ozone amount, requiring ozone concentration about 3000∼6000 PPM to realize any benefit in the flame speed. A better understanding on the ozone sensitivity is required for combustion device design with ozone addition. In this study, a Damköhler number analysis was performed to analyze the vast difference in the ozone sensitivity between auto-ignition and flame propagation. The analysis showed that, for ozone to be effective in flame propagation, the contribution of ozone on chemistry should be large enough to overcome the diffused radical from the oxidation layer. It is expected that similar analysis will be applicable to any additives to provide an understanding of their effect.\",\"PeriodicalId\":441369,\"journal\":{\"name\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Large Bore Engines; Fuels; Advanced Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Large Bore Engines; Fuels; Advanced Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

臭氧辅助燃烧在稳定燃烧和扩大内燃机工作范围方面显示出前景。然而,据报道,臭氧量对燃烧的敏感性因燃烧方式的不同而有显著差异。例如,均质装药压缩点火(HCCI)发动机的自动点火燃烧对臭氧浓度高度敏感,高达100 PPM就足以促进燃烧。另一方面,据报道,火花点燃(SI)发动机中的火焰传播对臭氧量的敏感性要低得多,需要臭氧浓度约3000 ~ 6000 PPM才能实现火焰速度的任何好处。在设计添加臭氧的燃烧装置时,需要对臭氧的敏感性有更好的了解。在本研究中,通过Damköhler数值分析来分析自燃和火焰传播之间臭氧敏感性的巨大差异。分析表明,为了使臭氧在火焰中有效传播,臭氧的化学贡献必须足够大,以克服氧化层扩散的自由基。预计类似的分析将适用于任何添加剂,以提供对其影响的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Damköhler Number Analysis on the Effect of Ozone on Auto-Ignition and Flame Propagation in Internal Combustion Engines
Ozone assisted combustion has shown promise in stabilizing combustion and extending operating range of internal combustion engines. However, it has been reported that sensitivity of ozone quantity on combustion varies significantly dependent on combustion modes. For example, auto-ignition driv3en combustion in homogeneous charge compression ignition (HCCI) engine was found to be highly sensitive to the ozone concentration, and up to 100 PPM was found to be sufficient to promote combustion. On the other hand, flame propagation in spark-ignited (SI) engine has been reported to be much less sensitive to the ozone amount, requiring ozone concentration about 3000∼6000 PPM to realize any benefit in the flame speed. A better understanding on the ozone sensitivity is required for combustion device design with ozone addition. In this study, a Damköhler number analysis was performed to analyze the vast difference in the ozone sensitivity between auto-ignition and flame propagation. The analysis showed that, for ozone to be effective in flame propagation, the contribution of ozone on chemistry should be large enough to overcome the diffused radical from the oxidation layer. It is expected that similar analysis will be applicable to any additives to provide an understanding of their effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation Emission and Combustion Characteristics of Diesel Engine Fumigated With Ammonia Effects of Outlier Flow Field on the Characteristics of In-Cylinder Coherent Structures Identified by POD-Based Conditional Averaging and Quadruple POD CI Engine Model Predictive Control With Availability Destruction Minimization Investigation of the Impact of Adding Titanium Dioxide to Jojoba Biodiesel-Diesel-N-Hexane Mixture on the Performance and Emission Characteristics of a Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1