基于滑模方法的神经网络模型参考自适应有源电力滤波器控制

Yunmei Fang, J. Fei, Kaiqi Ma
{"title":"基于滑模方法的神经网络模型参考自适应有源电力滤波器控制","authors":"Yunmei Fang, J. Fei, Kaiqi Ma","doi":"10.1109/IECON.2015.7392072","DOIUrl":null,"url":null,"abstract":"Model reference adaptive sliding mode control (MRASMC) using radical basis function (RBF) neural network (NN) is proposed to control the single-phase active power filter (APF). The RBF NN is utilized to approximate nonlinear function and eliminate the modeling error. AC side model reference adaptive current controller not only guarantees the globally stability of the APF system but also generate the compensating current to track the harmonic current accurately. Moreover, a sliding mode controller based on exponential approach is designed to improve the tracking performance of DC side voltage. Simulation results demonstrate that MRASMC using RBF NN can improve the adaptability and robustness of the APF system and track the given instructional signal quickly.","PeriodicalId":190550,"journal":{"name":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural network-based model reference adaptive control of active power filter based on sliding mode approach\",\"authors\":\"Yunmei Fang, J. Fei, Kaiqi Ma\",\"doi\":\"10.1109/IECON.2015.7392072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model reference adaptive sliding mode control (MRASMC) using radical basis function (RBF) neural network (NN) is proposed to control the single-phase active power filter (APF). The RBF NN is utilized to approximate nonlinear function and eliminate the modeling error. AC side model reference adaptive current controller not only guarantees the globally stability of the APF system but also generate the compensating current to track the harmonic current accurately. Moreover, a sliding mode controller based on exponential approach is designed to improve the tracking performance of DC side voltage. Simulation results demonstrate that MRASMC using RBF NN can improve the adaptability and robustness of the APF system and track the given instructional signal quickly.\",\"PeriodicalId\":190550,\"journal\":{\"name\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2015.7392072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2015.7392072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了基于径向基函数(RBF)神经网络的模型参考自适应滑模控制(MRASMC)来控制单相有源电力滤波器(APF)。利用RBF神经网络逼近非线性函数,消除建模误差。交流侧模型参考自适应电流控制器既保证了有源滤波器系统的全局稳定性,又能产生补偿电流,实现谐波电流的精确跟踪。此外,设计了一种基于指数方法的滑模控制器,以改善直流侧电压的跟踪性能。仿真结果表明,采用RBF神经网络的MRASMC可以提高APF系统的自适应性和鲁棒性,并能快速跟踪给定的指示信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network-based model reference adaptive control of active power filter based on sliding mode approach
Model reference adaptive sliding mode control (MRASMC) using radical basis function (RBF) neural network (NN) is proposed to control the single-phase active power filter (APF). The RBF NN is utilized to approximate nonlinear function and eliminate the modeling error. AC side model reference adaptive current controller not only guarantees the globally stability of the APF system but also generate the compensating current to track the harmonic current accurately. Moreover, a sliding mode controller based on exponential approach is designed to improve the tracking performance of DC side voltage. Simulation results demonstrate that MRASMC using RBF NN can improve the adaptability and robustness of the APF system and track the given instructional signal quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new combined bidirectional boost converter and battery charger for electric vehicles Mixed strategist dynamics application to electrical vehicle distributed load scheduling DC fault isolation study of bidirectional dual active bridge DC/DC converter for DC transmission grid application A combined switched reluctance motor drive and battery charger for electric vehicles Experimental validation of a proposed single-phase five-level active rectifier operating with model predictive current control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1