收紧单元感知ATPG网的网格尺寸以捕获所有可检测的最弱故障

Min-Chun Hu, Zhan Gao, Santosh Malagi, J. Swenton, J. Huisken, K. Goossens, Cheng-Wen Wu, E. Marinissen
{"title":"收紧单元感知ATPG网的网格尺寸以捕获所有可检测的最弱故障","authors":"Min-Chun Hu, Zhan Gao, Santosh Malagi, J. Swenton, J. Huisken, K. Goossens, Cheng-Wen Wu, E. Marinissen","doi":"10.1109/ETS48528.2020.9131567","DOIUrl":null,"url":null,"abstract":"Cell-aware test (CAT) explicitly targets faults caused by cell-internal short and open defects and has been shown to significantly reduce test escape rates. CAT library cell characterization is typically done for only two defect resistance values: one representing hard opens and another one representing hard shorts. In this paper, similar to fishermen tightening the mesh size of their nets to catch small fish, we perform library characterization as efficiently as possible for a set of resistances representing increasingly weaker defects, and then adjust our ATPG flow to explicitly target faults caused by the weakest still-detectable variant of each potential defect. We implemented this novel approach in an experimental ATPG tool flow script, using functions of Cadence's Modus as building blocks. To assess the effectiveness of our approach, we formulate a new dedicated test metric: the weakest fault coverage wfc. Compared to conventional CAT targeting hard defects only, experimental results show that our new approach enhances detection of weakest faults and significantly reduces wfc escapes =1-wfc, while maintaining its original (hard-defect) fault coverage fc, of course at the expense of (acceptable) increases in the required number of test patterns and associated test generation time.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tightening the Mesh Size of the Cell-Aware ATPG Net for Catching All Detectable Weakest Faults\",\"authors\":\"Min-Chun Hu, Zhan Gao, Santosh Malagi, J. Swenton, J. Huisken, K. Goossens, Cheng-Wen Wu, E. Marinissen\",\"doi\":\"10.1109/ETS48528.2020.9131567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-aware test (CAT) explicitly targets faults caused by cell-internal short and open defects and has been shown to significantly reduce test escape rates. CAT library cell characterization is typically done for only two defect resistance values: one representing hard opens and another one representing hard shorts. In this paper, similar to fishermen tightening the mesh size of their nets to catch small fish, we perform library characterization as efficiently as possible for a set of resistances representing increasingly weaker defects, and then adjust our ATPG flow to explicitly target faults caused by the weakest still-detectable variant of each potential defect. We implemented this novel approach in an experimental ATPG tool flow script, using functions of Cadence's Modus as building blocks. To assess the effectiveness of our approach, we formulate a new dedicated test metric: the weakest fault coverage wfc. Compared to conventional CAT targeting hard defects only, experimental results show that our new approach enhances detection of weakest faults and significantly reduces wfc escapes =1-wfc, while maintaining its original (hard-defect) fault coverage fc, of course at the expense of (acceptable) increases in the required number of test patterns and associated test generation time.\",\"PeriodicalId\":267309,\"journal\":{\"name\":\"2020 IEEE European Test Symposium (ETS)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS48528.2020.9131567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

细胞感知测试(CAT)明确针对由细胞内部短路和开放缺陷引起的故障,并已被证明可以显着降低测试逃逸率。CAT库单元表征通常只针对两个缺陷电阻值进行:一个代表硬打开,另一个代表硬短路。在本文中,类似于渔民收紧网眼尺寸以捕获小鱼,我们尽可能有效地对一组代表越来越弱缺陷的阻力进行库表征,然后调整我们的ATPG流以明确地针对由每个潜在缺陷的最弱仍可检测的变体引起的故障。我们在实验性的ATPG工具流脚本中实现了这种新颖的方法,使用Cadence的Modus功能作为构建块。为了评估我们方法的有效性,我们制定了一个新的专用测试度量:最弱故障覆盖率wfc。与仅针对硬缺陷的传统CAT相比,实验结果表明,我们的新方法增强了对最弱故障的检测,并显着降低了wfc逃逸=1-wfc,同时保持了其原始(硬缺陷)故障覆盖率fc,当然代价是所需的测试模式数量和相关测试生成时间(可接受的)增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tightening the Mesh Size of the Cell-Aware ATPG Net for Catching All Detectable Weakest Faults
Cell-aware test (CAT) explicitly targets faults caused by cell-internal short and open defects and has been shown to significantly reduce test escape rates. CAT library cell characterization is typically done for only two defect resistance values: one representing hard opens and another one representing hard shorts. In this paper, similar to fishermen tightening the mesh size of their nets to catch small fish, we perform library characterization as efficiently as possible for a set of resistances representing increasingly weaker defects, and then adjust our ATPG flow to explicitly target faults caused by the weakest still-detectable variant of each potential defect. We implemented this novel approach in an experimental ATPG tool flow script, using functions of Cadence's Modus as building blocks. To assess the effectiveness of our approach, we formulate a new dedicated test metric: the weakest fault coverage wfc. Compared to conventional CAT targeting hard defects only, experimental results show that our new approach enhances detection of weakest faults and significantly reduces wfc escapes =1-wfc, while maintaining its original (hard-defect) fault coverage fc, of course at the expense of (acceptable) increases in the required number of test patterns and associated test generation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determined-Safe Faults Identification: A step towards ISO26262 hardware compliant designs Accurate Measurements of Small Resistances in Vertical Interconnects with Small Aspect Ratios Anomaly Detection in Embedded Systems Using Power and Memory Side Channels The Risk of Outsourcing: Hidden SCA Trojans in Third-Party IP-Cores Threaten Cryptographic ICs A SIFT-based Waveform Clustering Method for aiding analog/mixed-signal IC Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1