Kunj Himanshu Vora, V. Sharov, N. Kordas, K. Seidl
{"title":"基于阻抗的喷墨印刷柔性传感器细胞密度测量","authors":"Kunj Himanshu Vora, V. Sharov, N. Kordas, K. Seidl","doi":"10.1109/fleps53764.2022.9781560","DOIUrl":null,"url":null,"abstract":"Cell density is an important parameter in the monitoring of biotechnological processes. An inline measurement principle is described based on impedance spectroscopy. The sensor is fabricated by inkjet printing of silver nanoparticle ink on a polyethylene terephthalate substrate. Yeast concentrations ranging from 0.5 g/l – 10 g/l have been measured. The cells were suspended in deionized water and in 0.1 M phosphate buffered saline to observe the effect on the impedance spectra. The impedance measurements were performed between the frequency range of 20 Hz – 1 MHz with an excitation voltage of 10 mV. Measurements in deionized water showed an increase in admittance of 94.6 µΩ-1 per 1 g/l of increase in cell concentration at 10 kHz. The effect of the cell membrane polarization resulting in a change of the capacitance is observable in phosphate buffered saline. The increase in capacitance observed is 360 pF per 1 g/l of increase in cell concentration. Thus, an inline, label-free method for cell-density monitoring is possible. It can be seen that impedance spectroscopy with a flexible sensor is a useful tool to monitor cell density and its relationship with the surrounding medium.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1998 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedance-based cell density measurement with inkjet printed flexible sensor\",\"authors\":\"Kunj Himanshu Vora, V. Sharov, N. Kordas, K. Seidl\",\"doi\":\"10.1109/fleps53764.2022.9781560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell density is an important parameter in the monitoring of biotechnological processes. An inline measurement principle is described based on impedance spectroscopy. The sensor is fabricated by inkjet printing of silver nanoparticle ink on a polyethylene terephthalate substrate. Yeast concentrations ranging from 0.5 g/l – 10 g/l have been measured. The cells were suspended in deionized water and in 0.1 M phosphate buffered saline to observe the effect on the impedance spectra. The impedance measurements were performed between the frequency range of 20 Hz – 1 MHz with an excitation voltage of 10 mV. Measurements in deionized water showed an increase in admittance of 94.6 µΩ-1 per 1 g/l of increase in cell concentration at 10 kHz. The effect of the cell membrane polarization resulting in a change of the capacitance is observable in phosphate buffered saline. The increase in capacitance observed is 360 pF per 1 g/l of increase in cell concentration. Thus, an inline, label-free method for cell-density monitoring is possible. It can be seen that impedance spectroscopy with a flexible sensor is a useful tool to monitor cell density and its relationship with the surrounding medium.\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"1998 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impedance-based cell density measurement with inkjet printed flexible sensor
Cell density is an important parameter in the monitoring of biotechnological processes. An inline measurement principle is described based on impedance spectroscopy. The sensor is fabricated by inkjet printing of silver nanoparticle ink on a polyethylene terephthalate substrate. Yeast concentrations ranging from 0.5 g/l – 10 g/l have been measured. The cells were suspended in deionized water and in 0.1 M phosphate buffered saline to observe the effect on the impedance spectra. The impedance measurements were performed between the frequency range of 20 Hz – 1 MHz with an excitation voltage of 10 mV. Measurements in deionized water showed an increase in admittance of 94.6 µΩ-1 per 1 g/l of increase in cell concentration at 10 kHz. The effect of the cell membrane polarization resulting in a change of the capacitance is observable in phosphate buffered saline. The increase in capacitance observed is 360 pF per 1 g/l of increase in cell concentration. Thus, an inline, label-free method for cell-density monitoring is possible. It can be seen that impedance spectroscopy with a flexible sensor is a useful tool to monitor cell density and its relationship with the surrounding medium.