使消息驱动的并行应用程序适应gpu加速的集群

James C. Phillips, J. Stone, K. Schulten
{"title":"使消息驱动的并行应用程序适应gpu加速的集群","authors":"James C. Phillips, J. Stone, K. Schulten","doi":"10.1109/SC.2008.5214716","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) have become an attractive option for accelerating scientific computations as a result of advances in the performance and flexibility of GPU hardware, and due to the availability of GPU software development tools targeting general purpose and scientific computation. However, effective use of GPUs in clusters presents a number of application development and system integration challenges. We describe strategies for the decomposition and scheduling of computation among CPU cores and GPUs, and techniques for overlapping communication and CPU computation with GPU kernel execution. We report the adaptation of these techniques to NAMD, a widely-used parallel molecular dynamics simulation package, and present performance results for a 64-core 64-GPU cluster.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":"{\"title\":\"Adapting a message-driven parallel application to GPU-accelerated clusters\",\"authors\":\"James C. Phillips, J. Stone, K. Schulten\",\"doi\":\"10.1109/SC.2008.5214716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics processing units (GPUs) have become an attractive option for accelerating scientific computations as a result of advances in the performance and flexibility of GPU hardware, and due to the availability of GPU software development tools targeting general purpose and scientific computation. However, effective use of GPUs in clusters presents a number of application development and system integration challenges. We describe strategies for the decomposition and scheduling of computation among CPU cores and GPUs, and techniques for overlapping communication and CPU computation with GPU kernel execution. We report the adaptation of these techniques to NAMD, a widely-used parallel molecular dynamics simulation package, and present performance results for a 64-core 64-GPU cluster.\",\"PeriodicalId\":230761,\"journal\":{\"name\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"185\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2008.5214716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2008.5214716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 185

摘要

由于GPU硬件的性能和灵活性的进步,以及针对通用和科学计算的GPU软件开发工具的可用性,图形处理单元(GPU)已经成为加速科学计算的一个有吸引力的选择。然而,在集群中有效使用gpu提出了许多应用程序开发和系统集成方面的挑战。我们描述了CPU内核和GPU之间计算的分解和调度策略,以及与GPU内核执行重叠通信和CPU计算的技术。我们报告了这些技术对NAMD(一个广泛使用的并行分子动力学模拟包)的适应,并给出了64核64 gpu集群的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting a message-driven parallel application to GPU-accelerated clusters
Graphics processing units (GPUs) have become an attractive option for accelerating scientific computations as a result of advances in the performance and flexibility of GPU hardware, and due to the availability of GPU software development tools targeting general purpose and scientific computation. However, effective use of GPUs in clusters presents a number of application development and system integration challenges. We describe strategies for the decomposition and scheduling of computation among CPU cores and GPUs, and techniques for overlapping communication and CPU computation with GPU kernel execution. We report the adaptation of these techniques to NAMD, a widely-used parallel molecular dynamics simulation package, and present performance results for a 64-core 64-GPU cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient auction-based grid reservations using dynamic programming Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers Nimrod/K: Towards massively parallel dynamic Grid workflows Global Trees: A framework for linked data structures on distributed memory parallel systems Bandwidth intensive 3-D FFT kernel for GPUs using CUDA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1