{"title":"温度上升对北阿拉伯海巴基斯坦南部地区管道环境中微波通信的影响","authors":"Imranullah Khan","doi":"10.33317/ssurj.175","DOIUrl":null,"url":null,"abstract":"The propagation of microwave (MW) of frequencies above 300 MHz is affected by the existence and properties of the atmospheric duct. Atmospheric ducts exist in many areas of the world ocean, including the Arabian Sea. Located in the Hadley Cell and monsoon region, different seasons bring air masses of different properties into the area under investigation, which has a significant impact on the formation and strength of the atmospheric duct. In this paper, we have done the modeling to analyze the patterns of electromagnetic ducting, which is significant in the southern region of Pakistan in the Arabian Sea. To analyze the real-time scenario, data were collected from three different areas off the southern coast of Pakistan in the northern Arabian Sea to observe the electromagnetic wave's effect on the evaporation ducts. Our analysis results reveal that rising temperature plays a significant role where ducts occur above 30% in the summer months and less than 7% in the spring, autumn, and winter months. It is due to an increase in temperature, especially in summer and autumn months, where humidity gradients play an essential role in creating a higher frequency of duct. The same observations were simulated to view the time analysis of pressure, humidity, and potential temperature in this region, depending upon the refractive index.","PeriodicalId":341241,"journal":{"name":"Sir Syed University Research Journal of Engineering & Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Rising Temperature on Microwave Communications in Ducting Environment over the Southern Region of Pakistan in the Northern Arabian Sea\",\"authors\":\"Imranullah Khan\",\"doi\":\"10.33317/ssurj.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The propagation of microwave (MW) of frequencies above 300 MHz is affected by the existence and properties of the atmospheric duct. Atmospheric ducts exist in many areas of the world ocean, including the Arabian Sea. Located in the Hadley Cell and monsoon region, different seasons bring air masses of different properties into the area under investigation, which has a significant impact on the formation and strength of the atmospheric duct. In this paper, we have done the modeling to analyze the patterns of electromagnetic ducting, which is significant in the southern region of Pakistan in the Arabian Sea. To analyze the real-time scenario, data were collected from three different areas off the southern coast of Pakistan in the northern Arabian Sea to observe the electromagnetic wave's effect on the evaporation ducts. Our analysis results reveal that rising temperature plays a significant role where ducts occur above 30% in the summer months and less than 7% in the spring, autumn, and winter months. It is due to an increase in temperature, especially in summer and autumn months, where humidity gradients play an essential role in creating a higher frequency of duct. The same observations were simulated to view the time analysis of pressure, humidity, and potential temperature in this region, depending upon the refractive index.\",\"PeriodicalId\":341241,\"journal\":{\"name\":\"Sir Syed University Research Journal of Engineering & Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sir Syed University Research Journal of Engineering & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33317/ssurj.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sir Syed University Research Journal of Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33317/ssurj.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Rising Temperature on Microwave Communications in Ducting Environment over the Southern Region of Pakistan in the Northern Arabian Sea
The propagation of microwave (MW) of frequencies above 300 MHz is affected by the existence and properties of the atmospheric duct. Atmospheric ducts exist in many areas of the world ocean, including the Arabian Sea. Located in the Hadley Cell and monsoon region, different seasons bring air masses of different properties into the area under investigation, which has a significant impact on the formation and strength of the atmospheric duct. In this paper, we have done the modeling to analyze the patterns of electromagnetic ducting, which is significant in the southern region of Pakistan in the Arabian Sea. To analyze the real-time scenario, data were collected from three different areas off the southern coast of Pakistan in the northern Arabian Sea to observe the electromagnetic wave's effect on the evaporation ducts. Our analysis results reveal that rising temperature plays a significant role where ducts occur above 30% in the summer months and less than 7% in the spring, autumn, and winter months. It is due to an increase in temperature, especially in summer and autumn months, where humidity gradients play an essential role in creating a higher frequency of duct. The same observations were simulated to view the time analysis of pressure, humidity, and potential temperature in this region, depending upon the refractive index.