Samar M. Ismail, L. Said, A. Rezk, A. Radwan, A. Madian, M. F. A. El-Yazeed, A. Soliman
{"title":"基于双驼峰和分数逻辑映射的生物医学图像加密","authors":"Samar M. Ismail, L. Said, A. Rezk, A. Radwan, A. Madian, M. F. A. El-Yazeed, A. Soliman","doi":"10.1109/MOCAST.2017.7937642","DOIUrl":null,"url":null,"abstract":"This paper presents a secured highly sensitive image encryption system suitable for biomedical applications. The pseudo random number generator of the presented system is based on two discrete logistic maps. The employed maps are: the double humped logistic map as well as the fractional order logistic map. The mixing of the map parameters and the initial conditions x0, offers a great variety for constructing more efficient encryption keys. Different analyses are introduced to measure the performance of the proposed encryption system such as: histogram analysis, correlation coefficients, MAE, NPCR as well as UACI measurements. The encryption system is proven to be highly sensitive to ±0.001% perturbation of the logistic maps parameters. The system is tested on medical images of knee MRI and a lung X-rays.","PeriodicalId":202381,"journal":{"name":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Biomedical image encryption based on double-humped and fractional logistic maps\",\"authors\":\"Samar M. Ismail, L. Said, A. Rezk, A. Radwan, A. Madian, M. F. A. El-Yazeed, A. Soliman\",\"doi\":\"10.1109/MOCAST.2017.7937642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a secured highly sensitive image encryption system suitable for biomedical applications. The pseudo random number generator of the presented system is based on two discrete logistic maps. The employed maps are: the double humped logistic map as well as the fractional order logistic map. The mixing of the map parameters and the initial conditions x0, offers a great variety for constructing more efficient encryption keys. Different analyses are introduced to measure the performance of the proposed encryption system such as: histogram analysis, correlation coefficients, MAE, NPCR as well as UACI measurements. The encryption system is proven to be highly sensitive to ±0.001% perturbation of the logistic maps parameters. The system is tested on medical images of knee MRI and a lung X-rays.\",\"PeriodicalId\":202381,\"journal\":{\"name\":\"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST.2017.7937642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST.2017.7937642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomedical image encryption based on double-humped and fractional logistic maps
This paper presents a secured highly sensitive image encryption system suitable for biomedical applications. The pseudo random number generator of the presented system is based on two discrete logistic maps. The employed maps are: the double humped logistic map as well as the fractional order logistic map. The mixing of the map parameters and the initial conditions x0, offers a great variety for constructing more efficient encryption keys. Different analyses are introduced to measure the performance of the proposed encryption system such as: histogram analysis, correlation coefficients, MAE, NPCR as well as UACI measurements. The encryption system is proven to be highly sensitive to ±0.001% perturbation of the logistic maps parameters. The system is tested on medical images of knee MRI and a lung X-rays.