基于层次先验的压缩感知MRI稀疏表示

Jianxin Cao, Shujun Liu, Kui Zhang
{"title":"基于层次先验的压缩感知MRI稀疏表示","authors":"Jianxin Cao, Shujun Liu, Kui Zhang","doi":"10.1109/SPIN52536.2021.9566016","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) allows accelerated magnetic resonance imaging (MRI) by highly undersampling k-space data. The key to high quality CS-MRI reconstruction is rational utilization of the sparsity of image in a certain transform domain. Existing CS-MRI methods commonly uses l0 norm or l1 norm to enforce the sparsity of image coefficients but lack parameter adaptation. In this work, a patch level sparse representation is derived from the joint maximum a posteriori (MAP) estimation under a probabilistic model, which adopts a hierarchical prior to characterize sparse image coefficients. The corresponding image reconstruction model is efficiently optimized by alternating direction method of multipliers (ADMM). Simulation results reveal that the proposed approach achieves higher reconstruction performance than competing CS-MRI methods, and is proven to be superior to general Ip norm based methods.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical prior based sparse representation for compressed sensing MRI\",\"authors\":\"Jianxin Cao, Shujun Liu, Kui Zhang\",\"doi\":\"10.1109/SPIN52536.2021.9566016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS) allows accelerated magnetic resonance imaging (MRI) by highly undersampling k-space data. The key to high quality CS-MRI reconstruction is rational utilization of the sparsity of image in a certain transform domain. Existing CS-MRI methods commonly uses l0 norm or l1 norm to enforce the sparsity of image coefficients but lack parameter adaptation. In this work, a patch level sparse representation is derived from the joint maximum a posteriori (MAP) estimation under a probabilistic model, which adopts a hierarchical prior to characterize sparse image coefficients. The corresponding image reconstruction model is efficiently optimized by alternating direction method of multipliers (ADMM). Simulation results reveal that the proposed approach achieves higher reconstruction performance than competing CS-MRI methods, and is proven to be superior to general Ip norm based methods.\",\"PeriodicalId\":343177,\"journal\":{\"name\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN52536.2021.9566016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压缩感知(CS)允许通过高度欠采样k空间数据加速磁共振成像(MRI)。在一定的变换域内合理利用图像的稀疏性是实现高质量CS-MRI重构的关键。现有的CS-MRI方法通常使用10范数或l1范数来增强图像系数的稀疏性,但缺乏参数自适应。在此工作中,在概率模型下,通过联合最大后验(MAP)估计得到patch级稀疏表示,该模型采用分层先验来表征稀疏图像系数。采用乘法器交替方向法(ADMM)对相应的图像重建模型进行了有效优化。仿真结果表明,该方法比竞争对手的CS-MRI方法具有更高的重建性能,并且优于一般基于Ip范数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical prior based sparse representation for compressed sensing MRI
Compressed sensing (CS) allows accelerated magnetic resonance imaging (MRI) by highly undersampling k-space data. The key to high quality CS-MRI reconstruction is rational utilization of the sparsity of image in a certain transform domain. Existing CS-MRI methods commonly uses l0 norm or l1 norm to enforce the sparsity of image coefficients but lack parameter adaptation. In this work, a patch level sparse representation is derived from the joint maximum a posteriori (MAP) estimation under a probabilistic model, which adopts a hierarchical prior to characterize sparse image coefficients. The corresponding image reconstruction model is efficiently optimized by alternating direction method of multipliers (ADMM). Simulation results reveal that the proposed approach achieves higher reconstruction performance than competing CS-MRI methods, and is proven to be superior to general Ip norm based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Compensation Circuit for ISFET based pH Sensor Knowledge Adaptation for Cross-Domain Opinion Mining Voltage Profile Enhancement of a 33 Bus System Integrated with Renewable Energy Sources and Electric Vehicle Power Quality Enhancement of Cascaded H Bridge 5 Level and 7 Level Inverters PIC simulation study of Beam Tunnel for W- Band high power Gyrotron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1