用于控制应用的极限学习ANFIS

G. Pillai, Pushpak Jagtap, M. Nisha
{"title":"用于控制应用的极限学习ANFIS","authors":"G. Pillai, Pushpak Jagtap, M. Nisha","doi":"10.1109/CICA.2014.7013226","DOIUrl":null,"url":null,"abstract":"This paper proposes a new neuro-fuzzy learning machine called extreme learning adaptive neuro-fuzzy inference system (ELANFIS) which can be applied to control of nonlinear systems. The new learning machine combines the learning capabilities of neural networks and the explicit knowledge of the fuzzy systems as in the case of conventional adaptive neuro-fuzzy inference system (ANFIS). The parameters of the fuzzy layer of ELANFIS are not tuned to achieve faster learning speed without sacrificing the generalization capability. The proposed learning machine is used for inverse control and model predictive control of nonlinear systems. Simulation results show improved performance with very less computation time which is much essential for real time control.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Extreme learning ANFIS for control applications\",\"authors\":\"G. Pillai, Pushpak Jagtap, M. Nisha\",\"doi\":\"10.1109/CICA.2014.7013226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new neuro-fuzzy learning machine called extreme learning adaptive neuro-fuzzy inference system (ELANFIS) which can be applied to control of nonlinear systems. The new learning machine combines the learning capabilities of neural networks and the explicit knowledge of the fuzzy systems as in the case of conventional adaptive neuro-fuzzy inference system (ANFIS). The parameters of the fuzzy layer of ELANFIS are not tuned to achieve faster learning speed without sacrificing the generalization capability. The proposed learning machine is used for inverse control and model predictive control of nonlinear systems. Simulation results show improved performance with very less computation time which is much essential for real time control.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文提出了一种新的神经模糊学习机——极限学习自适应神经模糊推理系统(ELANFIS),它可以应用于非线性系统的控制。新的学习机结合了神经网络的学习能力和模糊系统的显式知识,就像传统的自适应神经模糊推理系统(ANFIS)一样。为了在不牺牲泛化能力的情况下获得更快的学习速度,ELANFIS的模糊层参数没有进行调整。所提出的学习机可用于非线性系统的逆控制和模型预测控制。仿真结果表明,该方法不仅提高了性能,而且减少了计算时间,这对实时控制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extreme learning ANFIS for control applications
This paper proposes a new neuro-fuzzy learning machine called extreme learning adaptive neuro-fuzzy inference system (ELANFIS) which can be applied to control of nonlinear systems. The new learning machine combines the learning capabilities of neural networks and the explicit knowledge of the fuzzy systems as in the case of conventional adaptive neuro-fuzzy inference system (ANFIS). The parameters of the fuzzy layer of ELANFIS are not tuned to achieve faster learning speed without sacrificing the generalization capability. The proposed learning machine is used for inverse control and model predictive control of nonlinear systems. Simulation results show improved performance with very less computation time which is much essential for real time control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-class LS-SVM with zero leave-one-out error Enumeration of reachable, forbidden, live states of gen-left k-net system (with a non-sharing resource place) of Petri Nets Context-based adaptive robot behavior learning model (CARB-LM) New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1