D. Ikebuchi, N. Seki, Y. Kojima, M. Kamata, Lei Zhao, H. Amano, T. Shirai, S. Koyama, T. Hashida, Y. Umahashi, H. Masuda, K. Usami, S. Takeda, Hiroshi Nakamura, M. Namiki, Masaaki Kondo
{"title":"Geyser-1: MIPS R3000 CPU内核,具有细粒度运行时电源门控","authors":"D. Ikebuchi, N. Seki, Y. Kojima, M. Kamata, Lei Zhao, H. Amano, T. Shirai, S. Koyama, T. Hashida, Y. Umahashi, H. Masuda, K. Usami, S. Takeda, Hiroshi Nakamura, M. Namiki, Masaaki Kondo","doi":"10.5555/1899721.1899808","DOIUrl":null,"url":null,"abstract":"Geyser-1 is a MIPS CPU which provides a fine-grained run-time power gating (PG) controlled by instructions. Unlike traditional PGs, it uses special standard cells in which the virtual ground (VGND) is separated from the real ground, and a certain number of the sleep transistors are inserted for quick power shut-down and wake-up. In Geyser-1, the fine-grained run-time PG is applied to computational modules in the execution stage. The power shut-down and wakeup are controlled with architectural and software level. This implementation is the first available CPU with this type of run-time PG technique. Geyser-1 has both time and spatial fine-grained PG and works well with a real chip.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Geyser-1: A MIPS R3000 CPU core with fine-grained run-time power gating\",\"authors\":\"D. Ikebuchi, N. Seki, Y. Kojima, M. Kamata, Lei Zhao, H. Amano, T. Shirai, S. Koyama, T. Hashida, Y. Umahashi, H. Masuda, K. Usami, S. Takeda, Hiroshi Nakamura, M. Namiki, Masaaki Kondo\",\"doi\":\"10.5555/1899721.1899808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geyser-1 is a MIPS CPU which provides a fine-grained run-time power gating (PG) controlled by instructions. Unlike traditional PGs, it uses special standard cells in which the virtual ground (VGND) is separated from the real ground, and a certain number of the sleep transistors are inserted for quick power shut-down and wake-up. In Geyser-1, the fine-grained run-time PG is applied to computational modules in the execution stage. The power shut-down and wakeup are controlled with architectural and software level. This implementation is the first available CPU with this type of run-time PG technique. Geyser-1 has both time and spatial fine-grained PG and works well with a real chip.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1899721.1899808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1899721.1899808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geyser-1: A MIPS R3000 CPU core with fine-grained run-time power gating
Geyser-1 is a MIPS CPU which provides a fine-grained run-time power gating (PG) controlled by instructions. Unlike traditional PGs, it uses special standard cells in which the virtual ground (VGND) is separated from the real ground, and a certain number of the sleep transistors are inserted for quick power shut-down and wake-up. In Geyser-1, the fine-grained run-time PG is applied to computational modules in the execution stage. The power shut-down and wakeup are controlled with architectural and software level. This implementation is the first available CPU with this type of run-time PG technique. Geyser-1 has both time and spatial fine-grained PG and works well with a real chip.