森林火灾自动探测中的火灾识别算法研究:2010年国际控制、自动化与系统会议(ICCAS 2010)

Ho-Woong Choi, In-Kyu Min, Eui-Seok Oh, Dongho Park
{"title":"森林火灾自动探测中的火灾识别算法研究:2010年国际控制、自动化与系统会议(ICCAS 2010)","authors":"Ho-Woong Choi, In-Kyu Min, Eui-Seok Oh, Dongho Park","doi":"10.1109/ICCAS.2010.5670155","DOIUrl":null,"url":null,"abstract":"Forest fire, if not detected early enough, can cause great damage. In order to reduce it, it is important to detect fire as soon as possible and take actions to it. In this paper we propose a new image detection method for identifying fire in videos. The method analyzes the frame-to-frame change in given features of potential fire regions. These features are color, boundary roughness and skewness of the estimated fire regions. Because of flickering and random characteristics of fire, these are powerful discriminants. Using these statistical features, the results are combined according to the Bayes classifier to achieve a decision (i.e. fire happens, fire does not happen). Experiments illustrated the applicability of the method.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A study on the algorithm for fire recognition for automatic forest fire detection: The International Conference on Control, Automation and Systems 2010 (ICCAS 2010)\",\"authors\":\"Ho-Woong Choi, In-Kyu Min, Eui-Seok Oh, Dongho Park\",\"doi\":\"10.1109/ICCAS.2010.5670155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest fire, if not detected early enough, can cause great damage. In order to reduce it, it is important to detect fire as soon as possible and take actions to it. In this paper we propose a new image detection method for identifying fire in videos. The method analyzes the frame-to-frame change in given features of potential fire regions. These features are color, boundary roughness and skewness of the estimated fire regions. Because of flickering and random characteristics of fire, these are powerful discriminants. Using these statistical features, the results are combined according to the Bayes classifier to achieve a decision (i.e. fire happens, fire does not happen). Experiments illustrated the applicability of the method.\",\"PeriodicalId\":158687,\"journal\":{\"name\":\"ICCAS 2010\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAS 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2010.5670155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5670155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

森林火灾如果不及早发现,会造成巨大的破坏。为了减少火灾,及早发现火灾并采取措施是很重要的。本文提出了一种新的图像检测方法来识别视频中的火灾。该方法分析了潜在火灾区域给定特征下的帧间变化。这些特征是估计火灾区域的颜色、边界粗糙度和偏度。由于火焰的闪烁和随机特性,这些是强大的鉴别器。利用这些统计特征,根据贝叶斯分类器对结果进行组合,从而得出一个决策(即火灾发生,火灾不发生)。实验证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on the algorithm for fire recognition for automatic forest fire detection: The International Conference on Control, Automation and Systems 2010 (ICCAS 2010)
Forest fire, if not detected early enough, can cause great damage. In order to reduce it, it is important to detect fire as soon as possible and take actions to it. In this paper we propose a new image detection method for identifying fire in videos. The method analyzes the frame-to-frame change in given features of potential fire regions. These features are color, boundary roughness and skewness of the estimated fire regions. Because of flickering and random characteristics of fire, these are powerful discriminants. Using these statistical features, the results are combined according to the Bayes classifier to achieve a decision (i.e. fire happens, fire does not happen). Experiments illustrated the applicability of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low swing CMOS current mode charge pump A robust walking control of humanoid robots for industrial application Model-based software validation for automotive control systems Propose of unsealed deep groove ball bearing condition monitoring using sound analysis and fuzzy logic Effective covariance tracker based on adaptive changing of tracking window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1