{"title":"基于模型的环境对象回声定位","authors":"J. Santamaría, R. Arkin","doi":"10.1109/IROS.1994.407408","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm that can recognize and localize objects given a model of their contours using only ultrasonic range data. The algorithm exploits a physical model of the ultrasonic beam and combines several readings to extract outline object segments from the environment. It then detects patterns of outline segments that correspond to predefined models of object contours, performing both object recognition and localization. The algorithm is robust since it can account for noise and inaccurate readings as well as efficient since it uses a relaxation technique that can incorporate new data incrementally without recalculating from scratch.<<ETX>>","PeriodicalId":437805,"journal":{"name":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Model-based echolocation of environmental objects\",\"authors\":\"J. Santamaría, R. Arkin\",\"doi\":\"10.1109/IROS.1994.407408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm that can recognize and localize objects given a model of their contours using only ultrasonic range data. The algorithm exploits a physical model of the ultrasonic beam and combines several readings to extract outline object segments from the environment. It then detects patterns of outline segments that correspond to predefined models of object contours, performing both object recognition and localization. The algorithm is robust since it can account for noise and inaccurate readings as well as efficient since it uses a relaxation technique that can incorporate new data incrementally without recalculating from scratch.<<ETX>>\",\"PeriodicalId\":437805,\"journal\":{\"name\":\"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1994.407408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1994.407408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents an algorithm that can recognize and localize objects given a model of their contours using only ultrasonic range data. The algorithm exploits a physical model of the ultrasonic beam and combines several readings to extract outline object segments from the environment. It then detects patterns of outline segments that correspond to predefined models of object contours, performing both object recognition and localization. The algorithm is robust since it can account for noise and inaccurate readings as well as efficient since it uses a relaxation technique that can incorporate new data incrementally without recalculating from scratch.<>