T. Onken, J. Heilmann, T. Bieniek, R. Pufall, B. Wunderle
{"title":"溅射铝薄膜在振动硅MEMS悬臂梁上的高周疲劳试验与建模","authors":"T. Onken, J. Heilmann, T. Bieniek, R. Pufall, B. Wunderle","doi":"10.1109/EUROSIME.2016.7463332","DOIUrl":null,"url":null,"abstract":"Aluminium is still one of the most important contact metallisations for power electronic chips like MOSFETs or IGBTs. With a large difference in thermal expansion coefficients (CTEs) between aluminium and silicon and the temperatures generated in hot-spots during high power transients, these layers are prone to failure due to thermo-mechanical fatigue. So far, lifetime modelling was done by subjecting dedicated test specimens to the thermal cycling one would expect during normal operation. This paper will propose a novel method for creating accelerated lifetime models of thin aluminium films within the high-cycle fatigue regime by isothermal mechanical loads. The specially designed test stand is suggested to complement or replace expensive and lengthy thermal cycling and allow in-situ monitoring of failure indicators.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High cycle fatigue testing and modelling of sputtered aluminium thin films on vibrating silicon MEMS cantilevers\",\"authors\":\"T. Onken, J. Heilmann, T. Bieniek, R. Pufall, B. Wunderle\",\"doi\":\"10.1109/EUROSIME.2016.7463332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminium is still one of the most important contact metallisations for power electronic chips like MOSFETs or IGBTs. With a large difference in thermal expansion coefficients (CTEs) between aluminium and silicon and the temperatures generated in hot-spots during high power transients, these layers are prone to failure due to thermo-mechanical fatigue. So far, lifetime modelling was done by subjecting dedicated test specimens to the thermal cycling one would expect during normal operation. This paper will propose a novel method for creating accelerated lifetime models of thin aluminium films within the high-cycle fatigue regime by isothermal mechanical loads. The specially designed test stand is suggested to complement or replace expensive and lengthy thermal cycling and allow in-situ monitoring of failure indicators.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High cycle fatigue testing and modelling of sputtered aluminium thin films on vibrating silicon MEMS cantilevers
Aluminium is still one of the most important contact metallisations for power electronic chips like MOSFETs or IGBTs. With a large difference in thermal expansion coefficients (CTEs) between aluminium and silicon and the temperatures generated in hot-spots during high power transients, these layers are prone to failure due to thermo-mechanical fatigue. So far, lifetime modelling was done by subjecting dedicated test specimens to the thermal cycling one would expect during normal operation. This paper will propose a novel method for creating accelerated lifetime models of thin aluminium films within the high-cycle fatigue regime by isothermal mechanical loads. The specially designed test stand is suggested to complement or replace expensive and lengthy thermal cycling and allow in-situ monitoring of failure indicators.