使用计算机视觉技术预测眼睛注视

Ada Alevizaki, Nikos Melanitis, Konstantina S. Nikita
{"title":"使用计算机视觉技术预测眼睛注视","authors":"Ada Alevizaki, Nikos Melanitis, Konstantina S. Nikita","doi":"10.1109/BIBE.2019.00062","DOIUrl":null,"url":null,"abstract":"The goal of this work is to study mechanisms of visual attention to assist visual perception for patients suffering from age-related macular degeneration (AMD) or retinitis pigmentosa (RP) through artificial retina devices. We present a method to predict where humans look; we extend a visual saliency model by incorporating additional features and use this model to obtain saliency maps. These are thresholded at different scales to estimate the points of an image upon which the human eye fixates as well as the exact sequence of these fixations. The sequence of fixations extracted is further used to identify the part of the image that will mostly attract visual attention. Contrary to most existing approaches our method can indicate specific coordinates for the fixation points rather than generic areas that may attract visual attention and is thus more appropriate to imitate human fixations. Our method performs marginally better than the well-known method for saliency prediction we compare against (≈76% accuracy) and very satisfactorily in terms of estimating the sequence of fixations upon any given image (up to 98% accuracy).","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting Eye Fixations Using Computer Vision Techniques\",\"authors\":\"Ada Alevizaki, Nikos Melanitis, Konstantina S. Nikita\",\"doi\":\"10.1109/BIBE.2019.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this work is to study mechanisms of visual attention to assist visual perception for patients suffering from age-related macular degeneration (AMD) or retinitis pigmentosa (RP) through artificial retina devices. We present a method to predict where humans look; we extend a visual saliency model by incorporating additional features and use this model to obtain saliency maps. These are thresholded at different scales to estimate the points of an image upon which the human eye fixates as well as the exact sequence of these fixations. The sequence of fixations extracted is further used to identify the part of the image that will mostly attract visual attention. Contrary to most existing approaches our method can indicate specific coordinates for the fixation points rather than generic areas that may attract visual attention and is thus more appropriate to imitate human fixations. Our method performs marginally better than the well-known method for saliency prediction we compare against (≈76% accuracy) and very satisfactorily in terms of estimating the sequence of fixations upon any given image (up to 98% accuracy).\",\"PeriodicalId\":318819,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2019.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是通过人工视网膜装置研究视觉注意对老年性黄斑变性(AMD)或视网膜色素变性(RP)患者视觉感知的辅助作用机制。我们提出了一种预测人类视线的方法;我们扩展了一个视觉显著性模型,加入了额外的特征,并使用这个模型来获得显著性地图。这些阈值以不同的尺度来估计人眼注视的图像点以及这些注视的确切顺序。提取的注视序列进一步用于识别图像中最能吸引视觉注意力的部分。与大多数现有方法相反,我们的方法可以指示注视点的特定坐标,而不是可能吸引视觉注意力的一般区域,因此更适合模仿人类的注视。我们的方法比众所周知的显著性预测方法稍好(≈76%的准确率),并且在估计任何给定图像的注视序列方面非常令人满意(高达98%的准确率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Eye Fixations Using Computer Vision Techniques
The goal of this work is to study mechanisms of visual attention to assist visual perception for patients suffering from age-related macular degeneration (AMD) or retinitis pigmentosa (RP) through artificial retina devices. We present a method to predict where humans look; we extend a visual saliency model by incorporating additional features and use this model to obtain saliency maps. These are thresholded at different scales to estimate the points of an image upon which the human eye fixates as well as the exact sequence of these fixations. The sequence of fixations extracted is further used to identify the part of the image that will mostly attract visual attention. Contrary to most existing approaches our method can indicate specific coordinates for the fixation points rather than generic areas that may attract visual attention and is thus more appropriate to imitate human fixations. Our method performs marginally better than the well-known method for saliency prediction we compare against (≈76% accuracy) and very satisfactorily in terms of estimating the sequence of fixations upon any given image (up to 98% accuracy).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1