基于卷积神经网络的深度学习图像表征与相关反馈图像检索

Quynh Dao Thi Thuy
{"title":"基于卷积神经网络的深度学习图像表征与相关反馈图像检索","authors":"Quynh Dao Thi Thuy","doi":"10.32913/mic-ict-research.v2023.n1.1063","DOIUrl":null,"url":null,"abstract":"mage retrieval with traditional relevance feedback encounters problems: (1) ability to represent handcrafted features which is limited, and (2) inefficient withhigh-dimensional data such as image data. In this paper,we propose a framework based on very deep convolutionalneural network autoencoder for image retrieval, called AIR(Autoencoders for Image Retrieval). Our proposed frameworkallows to learn feature vectors directly from the raw imageand in an unsupervised manner. In addition, our frameworkutilizes a hybrid approach of unsupervised and supervisedto improve retrieval performance. The experimental resultsshow that our method gives better results than some existingmethods on the CIFAR-100 image set, which consists of 60,000images.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning of Image Representations with Convolutional Neural Networks Autoencoder for Image Retrieval with Relevance Feedback\",\"authors\":\"Quynh Dao Thi Thuy\",\"doi\":\"10.32913/mic-ict-research.v2023.n1.1063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"mage retrieval with traditional relevance feedback encounters problems: (1) ability to represent handcrafted features which is limited, and (2) inefficient withhigh-dimensional data such as image data. In this paper,we propose a framework based on very deep convolutionalneural network autoencoder for image retrieval, called AIR(Autoencoders for Image Retrieval). Our proposed frameworkallows to learn feature vectors directly from the raw imageand in an unsupervised manner. In addition, our frameworkutilizes a hybrid approach of unsupervised and supervisedto improve retrieval performance. The experimental resultsshow that our method gives better results than some existingmethods on the CIFAR-100 image set, which consists of 60,000images.\",\"PeriodicalId\":432355,\"journal\":{\"name\":\"Research and Development on Information and Communication Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and Development on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32913/mic-ict-research.v2023.n1.1063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Development on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32913/mic-ict-research.v2023.n1.1063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用传统的相关反馈进行图像检索会遇到以下问题:(1)表示手工特征的能力有限;(2)处理高维数据(如图像数据)的效率低下。在本文中,我们提出了一个基于深度卷积神经网络的图像检索自编码器框架,称为AIR(Autoencoders for image retrieval)。我们提出的框架允许以无监督的方式直接从原始图像中学习特征向量。此外,我们的框架利用无监督和有监督的混合方法来提高检索性能。实验结果表明,在包含6万张图像的CIFAR-100图像集上,我们的方法比现有的一些方法得到了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning of Image Representations with Convolutional Neural Networks Autoencoder for Image Retrieval with Relevance Feedback
mage retrieval with traditional relevance feedback encounters problems: (1) ability to represent handcrafted features which is limited, and (2) inefficient withhigh-dimensional data such as image data. In this paper,we propose a framework based on very deep convolutionalneural network autoencoder for image retrieval, called AIR(Autoencoders for Image Retrieval). Our proposed frameworkallows to learn feature vectors directly from the raw imageand in an unsupervised manner. In addition, our frameworkutilizes a hybrid approach of unsupervised and supervisedto improve retrieval performance. The experimental resultsshow that our method gives better results than some existingmethods on the CIFAR-100 image set, which consists of 60,000images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Một thuật toán định tuyến cân bằng năng lượng trong mạng cảm biến không dây dựa trên SDN Location Fusion and Data Augmentation for Thoracic Abnormalites Detection in Chest X-Ray Images A review of cyber security risk assessment for web systems during its deployment and operation Surveying Some Metaheuristic Algorithms For Solving Maximum Clique Graph Problem Deep Learning of Image Representations with Convolutional Neural Networks Autoencoder for Image Retrieval with Relevance Feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1