{"title":"自对准双栅悬体单壁碳纳米管场效应晶体管","authors":"Ji Cao, A. Ionescu","doi":"10.1109/ESSDERC.2011.6044171","DOIUrl":null,"url":null,"abstract":"Self-aligned suspended-body single-walled carbon nanotube field-effect-transistors (SWCNT FETs) have been demonstrated with efficient and independent electrostatic control by two laterally placed independent gates spaced less than 100 nm away from the CNT channel. The operation of the suspended-body SWCNTFETs, in double-gate (DG) mode and single-gate (SG) mode, is analyzed in detail. Strong interface coupling of the double gates and tuning of the second independent gate (linear threshold voltage variation, constant subthreshold swing), are typical effects in these suspended-body SWCNTFETs. The comparison of SG and DG operations demonstrates the superiority of DG SWCNTFETs: remarkably improved subthreshold slope (from 130 mV/decade to 86 mV/decade) and transconductance (higher than four times the value in SG SWCNTFETs). The experimental data and the difference between SG and DG modes are explained. The double-gate suspended-body CNTFETs hold promise for bottom-up fabrication of resonant nano-electro-mechanical-systems (NEMS) devices, such as tunable/switchable resonators for sensing and radio-frequency (RF) applications.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-aligned double-gate suspended-body single-walled carbon nanotube field-effect-transistors\",\"authors\":\"Ji Cao, A. Ionescu\",\"doi\":\"10.1109/ESSDERC.2011.6044171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-aligned suspended-body single-walled carbon nanotube field-effect-transistors (SWCNT FETs) have been demonstrated with efficient and independent electrostatic control by two laterally placed independent gates spaced less than 100 nm away from the CNT channel. The operation of the suspended-body SWCNTFETs, in double-gate (DG) mode and single-gate (SG) mode, is analyzed in detail. Strong interface coupling of the double gates and tuning of the second independent gate (linear threshold voltage variation, constant subthreshold swing), are typical effects in these suspended-body SWCNTFETs. The comparison of SG and DG operations demonstrates the superiority of DG SWCNTFETs: remarkably improved subthreshold slope (from 130 mV/decade to 86 mV/decade) and transconductance (higher than four times the value in SG SWCNTFETs). The experimental data and the difference between SG and DG modes are explained. The double-gate suspended-body CNTFETs hold promise for bottom-up fabrication of resonant nano-electro-mechanical-systems (NEMS) devices, such as tunable/switchable resonators for sensing and radio-frequency (RF) applications.\",\"PeriodicalId\":161896,\"journal\":{\"name\":\"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2011.6044171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-aligned suspended-body single-walled carbon nanotube field-effect-transistors (SWCNT FETs) have been demonstrated with efficient and independent electrostatic control by two laterally placed independent gates spaced less than 100 nm away from the CNT channel. The operation of the suspended-body SWCNTFETs, in double-gate (DG) mode and single-gate (SG) mode, is analyzed in detail. Strong interface coupling of the double gates and tuning of the second independent gate (linear threshold voltage variation, constant subthreshold swing), are typical effects in these suspended-body SWCNTFETs. The comparison of SG and DG operations demonstrates the superiority of DG SWCNTFETs: remarkably improved subthreshold slope (from 130 mV/decade to 86 mV/decade) and transconductance (higher than four times the value in SG SWCNTFETs). The experimental data and the difference between SG and DG modes are explained. The double-gate suspended-body CNTFETs hold promise for bottom-up fabrication of resonant nano-electro-mechanical-systems (NEMS) devices, such as tunable/switchable resonators for sensing and radio-frequency (RF) applications.