从BERT中提取知识到简单的全连接神经网络以实现高效的垂直检索

Peiyang Liu, Xi Wang, Lin Wang, Wei Ye, Xiangyu Xi, Shikun Zhang
{"title":"从BERT中提取知识到简单的全连接神经网络以实现高效的垂直检索","authors":"Peiyang Liu, Xi Wang, Lin Wang, Wei Ye, Xiangyu Xi, Shikun Zhang","doi":"10.1145/3459637.3481909","DOIUrl":null,"url":null,"abstract":"Distilled BERT models are more suitable for efficient vertical retrieval in online sponsored vertical search with low-latency requirements than BERT due to fewer parameters and faster inference. Unfortunately, most of these models are still far from ideal inference speed. This paper presents a novel and effective method to distill knowledge from BERT into simple fully connected neural networks (FNN). Results of extensive experiments on English and Chinese datasets demonstrate that our method achieves comparable results with existing distilled BERT models while the inference is accelerated by more than ten times. We have successfully applied our method on our online sponsored vertical search engine and get remarkable improvements.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Distilling Knowledge from BERT into Simple Fully Connected Neural Networks for Efficient Vertical Retrieval\",\"authors\":\"Peiyang Liu, Xi Wang, Lin Wang, Wei Ye, Xiangyu Xi, Shikun Zhang\",\"doi\":\"10.1145/3459637.3481909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distilled BERT models are more suitable for efficient vertical retrieval in online sponsored vertical search with low-latency requirements than BERT due to fewer parameters and faster inference. Unfortunately, most of these models are still far from ideal inference speed. This paper presents a novel and effective method to distill knowledge from BERT into simple fully connected neural networks (FNN). Results of extensive experiments on English and Chinese datasets demonstrate that our method achieves comparable results with existing distilled BERT models while the inference is accelerated by more than ten times. We have successfully applied our method on our online sponsored vertical search engine and get remarkable improvements.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3481909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3481909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在低延迟的在线赞助垂直搜索中,蒸馏BERT模型比BERT模型更适合于高效的垂直检索,因为它的参数更少,推理速度更快。不幸的是,这些模型中的大多数离理想的推理速度还很远。本文提出了一种新颖有效的方法,将BERT中的知识提取到简单的全连接神经网络中。在中文和英文数据集上的大量实验结果表明,我们的方法与现有的蒸馏BERT模型达到了相当的结果,并且推理速度提高了十倍以上。我们已经成功地将我们的方法应用于我们的在线赞助垂直搜索引擎,并获得了显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distilling Knowledge from BERT into Simple Fully Connected Neural Networks for Efficient Vertical Retrieval
Distilled BERT models are more suitable for efficient vertical retrieval in online sponsored vertical search with low-latency requirements than BERT due to fewer parameters and faster inference. Unfortunately, most of these models are still far from ideal inference speed. This paper presents a novel and effective method to distill knowledge from BERT into simple fully connected neural networks (FNN). Results of extensive experiments on English and Chinese datasets demonstrate that our method achieves comparable results with existing distilled BERT models while the inference is accelerated by more than ten times. We have successfully applied our method on our online sponsored vertical search engine and get remarkable improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1