面向高性能的数据并行集群中的网络感知调度器

Zhuozhao Li, Haiying Shen, Ankur Sarker
{"title":"面向高性能的数据并行集群中的网络感知调度器","authors":"Zhuozhao Li, Haiying Shen, Ankur Sarker","doi":"10.1109/CCGRID.2018.00015","DOIUrl":null,"url":null,"abstract":"In spite of many shuffle-heavy jobs in current commercial data-parallel clusters, few previous studies have considered the network traffic in the shuffle phase, which contains a large amount of data transfers and may adversely affect the cluster performance. In this paper, we propose a network-aware scheduler (NAS) that handles two main challenges associated with the shuffle phase for high performance: i) balancing cross-node network load, and ii) avoiding and reducing cross-rack network congestion. NAS consists of three main mechanisms: i) map task scheduling (MTS), ii) congestion-avoidance reduce task scheduling (CA-RTS) and iii) congestion-reduction reduce task scheduling (CR-RTS). MTS constrains the shuffle data on each node when scheduling the map tasks to balance the cross-node network load. CA-RTS distributes the reduce tasks for each job based on the distribution of its shuffle data among the racks in order to minimize cross-rack traffic. When the network is congested, CR-RTS schedules reduce tasks that generate negligible shuffle traffic to reduce the congestion. We implemented NAS in Hadoop on a cluster. Our trace-driven simulation and real cluster experiment demonstrate the superior performance of NAS on improving the throughput (up to 62%), reducing the average job execution time (up to 44%) and reducing the cross-rack traffic (up to 40%) compared with state-of-the-art schedulers.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Network-Aware Scheduler in Data-Parallel Clusters for High Performance\",\"authors\":\"Zhuozhao Li, Haiying Shen, Ankur Sarker\",\"doi\":\"10.1109/CCGRID.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spite of many shuffle-heavy jobs in current commercial data-parallel clusters, few previous studies have considered the network traffic in the shuffle phase, which contains a large amount of data transfers and may adversely affect the cluster performance. In this paper, we propose a network-aware scheduler (NAS) that handles two main challenges associated with the shuffle phase for high performance: i) balancing cross-node network load, and ii) avoiding and reducing cross-rack network congestion. NAS consists of three main mechanisms: i) map task scheduling (MTS), ii) congestion-avoidance reduce task scheduling (CA-RTS) and iii) congestion-reduction reduce task scheduling (CR-RTS). MTS constrains the shuffle data on each node when scheduling the map tasks to balance the cross-node network load. CA-RTS distributes the reduce tasks for each job based on the distribution of its shuffle data among the racks in order to minimize cross-rack traffic. When the network is congested, CR-RTS schedules reduce tasks that generate negligible shuffle traffic to reduce the congestion. We implemented NAS in Hadoop on a cluster. Our trace-driven simulation and real cluster experiment demonstrate the superior performance of NAS on improving the throughput (up to 62%), reducing the average job execution time (up to 44%) and reducing the cross-rack traffic (up to 40%) compared with state-of-the-art schedulers.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

尽管目前的商业数据并行集群中存在许多重shuffle任务,但很少有研究考虑shuffle阶段的网络流量,因为shuffle阶段包含大量的数据传输,可能会对集群性能产生不利影响。在本文中,我们提出了一个网络感知调度程序(NAS),它可以处理与shuffle阶段相关的两个主要挑战,以实现高性能:i)平衡跨节点网络负载,ii)避免和减少跨机架网络拥塞。NAS包括三种主要机制:1)映射任务调度(MTS), 2)避免拥塞减少任务调度(CA-RTS)和3)减少拥塞减少任务调度(CR-RTS)。MTS在调度map任务时对每个节点上的shuffle数据进行约束,以平衡跨节点的网络负载。CA-RTS根据其shuffle数据在机架之间的分布为每个作业分配reduce任务,以最小化跨机架流量。当网络拥塞时,CR-RTS调度会减少产生可以忽略不计的shuffle流量的任务,以减少拥塞。我们在Hadoop集群上实现了NAS。我们的跟踪驱动模拟和真实集群实验证明,与最先进的调度程序相比,NAS在提高吞吐量(高达62%)、减少平均作业执行时间(高达44%)和减少跨机架流量(高达40%)方面具有卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Network-Aware Scheduler in Data-Parallel Clusters for High Performance
In spite of many shuffle-heavy jobs in current commercial data-parallel clusters, few previous studies have considered the network traffic in the shuffle phase, which contains a large amount of data transfers and may adversely affect the cluster performance. In this paper, we propose a network-aware scheduler (NAS) that handles two main challenges associated with the shuffle phase for high performance: i) balancing cross-node network load, and ii) avoiding and reducing cross-rack network congestion. NAS consists of three main mechanisms: i) map task scheduling (MTS), ii) congestion-avoidance reduce task scheduling (CA-RTS) and iii) congestion-reduction reduce task scheduling (CR-RTS). MTS constrains the shuffle data on each node when scheduling the map tasks to balance the cross-node network load. CA-RTS distributes the reduce tasks for each job based on the distribution of its shuffle data among the racks in order to minimize cross-rack traffic. When the network is congested, CR-RTS schedules reduce tasks that generate negligible shuffle traffic to reduce the congestion. We implemented NAS in Hadoop on a cluster. Our trace-driven simulation and real cluster experiment demonstrate the superior performance of NAS on improving the throughput (up to 62%), reducing the average job execution time (up to 44%) and reducing the cross-rack traffic (up to 40%) compared with state-of-the-art schedulers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1