Prabhash Kumar Sonwani, A. Swarnkar, Gurpinder Singh, N. Gupta, K. R. Niazi
{"title":"基于事件优化技术的住宅能耗分解","authors":"Prabhash Kumar Sonwani, A. Swarnkar, Gurpinder Singh, N. Gupta, K. R. Niazi","doi":"10.1109/ICEEICT56924.2023.10157394","DOIUrl":null,"url":null,"abstract":"Non-intrusive load monitoring (NILM) is a technique for disaggregating the total energy consumption of a building into individual appliance-level energy consumption. Event detection is a critical component of NILM systems as it involves the identification and classification of different electrical events from the aggregate power signal. In this article an event detection method for NILM systems has been proposed that is based on the analysis of the statistical properties of the aggregate power signal. Specifically, we use a sliding window approach and K-Means clustering to detect number of devices from the power signal and then apply a threshold-based algorithm to detect electrical events. We evaluate the proposed method on a public dataset and demonstrate its effectiveness in accurately detecting electrical events. The proposed method has the potential to improve the accuracy with recall of 98.84% carried out on Pecan Street Datanort Inc.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Disaggregation of Residential House via Event Based Optimization Technique\",\"authors\":\"Prabhash Kumar Sonwani, A. Swarnkar, Gurpinder Singh, N. Gupta, K. R. Niazi\",\"doi\":\"10.1109/ICEEICT56924.2023.10157394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive load monitoring (NILM) is a technique for disaggregating the total energy consumption of a building into individual appliance-level energy consumption. Event detection is a critical component of NILM systems as it involves the identification and classification of different electrical events from the aggregate power signal. In this article an event detection method for NILM systems has been proposed that is based on the analysis of the statistical properties of the aggregate power signal. Specifically, we use a sliding window approach and K-Means clustering to detect number of devices from the power signal and then apply a threshold-based algorithm to detect electrical events. We evaluate the proposed method on a public dataset and demonstrate its effectiveness in accurately detecting electrical events. The proposed method has the potential to improve the accuracy with recall of 98.84% carried out on Pecan Street Datanort Inc.\",\"PeriodicalId\":345324,\"journal\":{\"name\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT56924.2023.10157394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
非侵入式负荷监测(NILM)是一种将建筑物的总能耗分解为单个电器级能耗的技术。事件检测是NILM系统的关键组成部分,因为它涉及到从总功率信号中识别和分类不同的电气事件。本文提出了一种基于总功率信号统计特性分析的NILM系统事件检测方法。具体来说,我们使用滑动窗口方法和K-Means聚类从功率信号中检测设备数量,然后应用基于阈值的算法检测电事件。我们在一个公共数据集上评估了所提出的方法,并证明了它在准确检测电事件方面的有效性。该方法对Pecan Street Datanort Inc.的查全率达到98.84%,具有提高查全率的潜力。
Energy Disaggregation of Residential House via Event Based Optimization Technique
Non-intrusive load monitoring (NILM) is a technique for disaggregating the total energy consumption of a building into individual appliance-level energy consumption. Event detection is a critical component of NILM systems as it involves the identification and classification of different electrical events from the aggregate power signal. In this article an event detection method for NILM systems has been proposed that is based on the analysis of the statistical properties of the aggregate power signal. Specifically, we use a sliding window approach and K-Means clustering to detect number of devices from the power signal and then apply a threshold-based algorithm to detect electrical events. We evaluate the proposed method on a public dataset and demonstrate its effectiveness in accurately detecting electrical events. The proposed method has the potential to improve the accuracy with recall of 98.84% carried out on Pecan Street Datanort Inc.