在分解内存上构建写优化树索引

Qing Wang, Youyou Lu, J. Shu
{"title":"在分解内存上构建写优化树索引","authors":"Qing Wang, Youyou Lu, J. Shu","doi":"10.1145/3604437.3604448","DOIUrl":null,"url":null,"abstract":"Memory disaggregation architecture physically separates CPU and memory into independent components, which are connected via high-speed RDMA networks, greatly improving resource utilization of database systems. However, such an architecture poses unique challenges to data indexing due to limited RDMA semantics and near-zero computation power at memory side. Existing indexes supporting disaggregated memory either suffer from low write performance, or require hardware modification.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Write-Optimized Tree Indexes on Disaggregated Memory\",\"authors\":\"Qing Wang, Youyou Lu, J. Shu\",\"doi\":\"10.1145/3604437.3604448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory disaggregation architecture physically separates CPU and memory into independent components, which are connected via high-speed RDMA networks, greatly improving resource utilization of database systems. However, such an architecture poses unique challenges to data indexing due to limited RDMA semantics and near-zero computation power at memory side. Existing indexes supporting disaggregated memory either suffer from low write performance, or require hardware modification.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604437.3604448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604437.3604448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内存分解架构将CPU和内存物理分离为独立的组件,通过高速RDMA网络连接,极大地提高了数据库系统的资源利用率。然而,由于有限的RDMA语义和内存端的计算能力接近于零,这种体系结构对数据索引提出了独特的挑战。支持分解内存的现有索引要么写性能很低,要么需要修改硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building Write-Optimized Tree Indexes on Disaggregated Memory
Memory disaggregation architecture physically separates CPU and memory into independent components, which are connected via high-speed RDMA networks, greatly improving resource utilization of database systems. However, such an architecture poses unique challenges to data indexing due to limited RDMA semantics and near-zero computation power at memory side. Existing indexes supporting disaggregated memory either suffer from low write performance, or require hardware modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1