任务工作台:用于评估并行运行时性能的参数化基准

Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, N. Garcia, Wilhem Kautz, Emily Marx, Kaleb S. Morris, Wonchan Lee, Qinglei Cao, G. Bosilca, S. Mirchandaney, Sean Treichler, P. McCormick, A. Aiken
{"title":"任务工作台:用于评估并行运行时性能的参数化基准","authors":"Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, N. Garcia, Wilhem Kautz, Emily Marx, Kaleb S. Morris, Wonchan Lee, Qinglei Cao, G. Bosilca, S. Mirchandaney, Sean Treichler, P. McCormick, A. Aiken","doi":"10.1109/SC41405.2020.00066","DOIUrl":null,"url":null,"abstract":"We present Task Bench, a parameterized benchmark designed to explore the performance of distributed programming systems under a variety of application scenarios. Task Bench dramatically lowers the barrier to benchmarking and comparing multiple programming systems by making the implementation for a given system orthogonal to the benchmarks themselves: every benchmark constructed with Task Bench runs on every Task Bench implementation. Furthermore, Task Bench’s parameterization enables a wide variety of benchmark scenarios that distill the key characteristics of larger applications.To assess the effectiveness and overheads of the tested systems, we introduce a novel metric, minimum effective task granularity (METG). We conduct a comprehensive study with 15 programming systems on up to 256 Haswell nodes of the Cori supercomputer. Running at scale, 100$\\mu$s-long tasks are the finest granularity that any system runs efficiently with current technologies. We also study each system’s scalability, ability to hide communication and mitigate load imbalance.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance\",\"authors\":\"Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, N. Garcia, Wilhem Kautz, Emily Marx, Kaleb S. Morris, Wonchan Lee, Qinglei Cao, G. Bosilca, S. Mirchandaney, Sean Treichler, P. McCormick, A. Aiken\",\"doi\":\"10.1109/SC41405.2020.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Task Bench, a parameterized benchmark designed to explore the performance of distributed programming systems under a variety of application scenarios. Task Bench dramatically lowers the barrier to benchmarking and comparing multiple programming systems by making the implementation for a given system orthogonal to the benchmarks themselves: every benchmark constructed with Task Bench runs on every Task Bench implementation. Furthermore, Task Bench’s parameterization enables a wide variety of benchmark scenarios that distill the key characteristics of larger applications.To assess the effectiveness and overheads of the tested systems, we introduce a novel metric, minimum effective task granularity (METG). We conduct a comprehensive study with 15 programming systems on up to 256 Haswell nodes of the Cori supercomputer. Running at scale, 100$\\\\mu$s-long tasks are the finest granularity that any system runs efficiently with current technologies. We also study each system’s scalability, ability to hide communication and mitigate load imbalance.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们提出Task Bench,这是一个参数化基准,旨在探索分布式编程系统在各种应用场景下的性能。Task Bench通过使给定系统的实现与基准测试本身正交,极大地降低了基准测试和比较多个编程系统的障碍:用Task Bench构建的每个基准测试都运行在每个Task Bench实现上。此外,Task Bench的参数化支持各种各样的基准测试场景,这些场景可以提炼出大型应用程序的关键特征。为了评估被测试系统的有效性和开销,我们引入了一个新的度量,最小有效任务粒度(METG)。我们在Cori超级计算机的多达256个Haswell节点上对15个编程系统进行了全面的研究。在规模上运行,100$\mu$s长的任务是当前技术下任何系统有效运行的最细粒度。我们还研究了每个系统的可扩展性、隐藏通信和减轻负载不平衡的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance
We present Task Bench, a parameterized benchmark designed to explore the performance of distributed programming systems under a variety of application scenarios. Task Bench dramatically lowers the barrier to benchmarking and comparing multiple programming systems by making the implementation for a given system orthogonal to the benchmarks themselves: every benchmark constructed with Task Bench runs on every Task Bench implementation. Furthermore, Task Bench’s parameterization enables a wide variety of benchmark scenarios that distill the key characteristics of larger applications.To assess the effectiveness and overheads of the tested systems, we introduce a novel metric, minimum effective task granularity (METG). We conduct a comprehensive study with 15 programming systems on up to 256 Haswell nodes of the Cori supercomputer. Running at scale, 100$\mu$s-long tasks are the finest granularity that any system runs efficiently with current technologies. We also study each system’s scalability, ability to hide communication and mitigate load imbalance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1