基于模糊聚类的对比度增强

Yunqi Hu, Shaosheng Dai, Jin-song Liu
{"title":"基于模糊聚类的对比度增强","authors":"Yunqi Hu, Shaosheng Dai, Jin-song Liu","doi":"10.1109/ICIST.2014.6920586","DOIUrl":null,"url":null,"abstract":"The gray level transformation combining with local standard deviation is an effective and efficient way to enhance the contrast of gray images without much calculating burden. Conventional algorithms always calculate pixel's local standard deviation in a rectangular area centered to itself, which fail to take the natural traits of the image's content into consideration. The algorithm we propose uses fuzzy clustering to cluster pixels into different types, hence to extract the feature of the image's content. And modify the pixel combing the standard deviation of the cluster it belongs to with the global one, which enables us to more effectively enhance the image's contrast. Experimental results show that the proposed method can improve image's contrast more significantly than the conventional gray level transformation algorithm.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrast enhancement based on fuzzy clustering\",\"authors\":\"Yunqi Hu, Shaosheng Dai, Jin-song Liu\",\"doi\":\"10.1109/ICIST.2014.6920586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gray level transformation combining with local standard deviation is an effective and efficient way to enhance the contrast of gray images without much calculating burden. Conventional algorithms always calculate pixel's local standard deviation in a rectangular area centered to itself, which fail to take the natural traits of the image's content into consideration. The algorithm we propose uses fuzzy clustering to cluster pixels into different types, hence to extract the feature of the image's content. And modify the pixel combing the standard deviation of the cluster it belongs to with the global one, which enables us to more effectively enhance the image's contrast. Experimental results show that the proposed method can improve image's contrast more significantly than the conventional gray level transformation algorithm.\",\"PeriodicalId\":306383,\"journal\":{\"name\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2014.6920586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合局部标准差的灰度变换是一种有效的增强灰度图像对比度的方法,且计算量小。传统算法总是在以自身为中心的矩形区域内计算像素的局部标准差,没有考虑到图像内容的自然特征。我们提出的算法使用模糊聚类将像素聚类成不同的类型,从而提取图像内容的特征。并结合所属聚类的标准差与全局标准差对像素进行修改,使我们能够更有效地增强图像的对比度。实验结果表明,该方法比传统的灰度变换算法能更显著地提高图像的对比度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrast enhancement based on fuzzy clustering
The gray level transformation combining with local standard deviation is an effective and efficient way to enhance the contrast of gray images without much calculating burden. Conventional algorithms always calculate pixel's local standard deviation in a rectangular area centered to itself, which fail to take the natural traits of the image's content into consideration. The algorithm we propose uses fuzzy clustering to cluster pixels into different types, hence to extract the feature of the image's content. And modify the pixel combing the standard deviation of the cluster it belongs to with the global one, which enables us to more effectively enhance the image's contrast. Experimental results show that the proposed method can improve image's contrast more significantly than the conventional gray level transformation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined selective mapping and extended hamming codes for PAPR reduction in OFDM systems Outage analysis of two-way AF relaying systems with imperfect CSI and multiple interferers over Nakagami-m fading channels An empirical study of filter-based feature selection algorithms using noisy training data Using DTW to measure trajectory distance in grid space Parameter optimization for hyperspectral image compression algorithm of maximum error controllable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1