{"title":"单磁隧道结随机计算单元","authors":"Yang Lv, Jianping Wang","doi":"10.1109/IEDM.2017.8268504","DOIUrl":null,"url":null,"abstract":"We propose and experimentally demonstrate stochastic computing (SC) with a single magnetic tunnel junction (MJT), exploiting the physical properties and behaviors of the device. Pulse amplitude, bias field, bias current, and pulse width are used as inputs; the output is the switching probability. A single MJT can implement the operations of addition and multiplication. The scheme benefits from the high energy efficiency of an MTJ operated by spintransfer torque (STT), or other future switching mechanisms. Stochastic operations naturally provide high error tolerance, low complexity and low area cost.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A single magnetic-tunnel-junction stochastic computing unit\",\"authors\":\"Yang Lv, Jianping Wang\",\"doi\":\"10.1109/IEDM.2017.8268504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and experimentally demonstrate stochastic computing (SC) with a single magnetic tunnel junction (MJT), exploiting the physical properties and behaviors of the device. Pulse amplitude, bias field, bias current, and pulse width are used as inputs; the output is the switching probability. A single MJT can implement the operations of addition and multiplication. The scheme benefits from the high energy efficiency of an MTJ operated by spintransfer torque (STT), or other future switching mechanisms. Stochastic operations naturally provide high error tolerance, low complexity and low area cost.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A single magnetic-tunnel-junction stochastic computing unit
We propose and experimentally demonstrate stochastic computing (SC) with a single magnetic tunnel junction (MJT), exploiting the physical properties and behaviors of the device. Pulse amplitude, bias field, bias current, and pulse width are used as inputs; the output is the switching probability. A single MJT can implement the operations of addition and multiplication. The scheme benefits from the high energy efficiency of an MTJ operated by spintransfer torque (STT), or other future switching mechanisms. Stochastic operations naturally provide high error tolerance, low complexity and low area cost.