P. Khial, Samir Nooshabadi, Austin C. Fikes, A. Hajimiri
{"title":"多波束,可扩展的28ghz中继阵列,使用无源高阶n路滤波器进行频率和空域多址访问","authors":"P. Khial, Samir Nooshabadi, Austin C. Fikes, A. Hajimiri","doi":"10.1109/RFIC54546.2022.9863113","DOIUrl":null,"url":null,"abstract":"A 28 GHz scalable relay array that independently re-routes multiple beamformed data-channels in different frequency bands is presented, allowing for frequency and spatial division multiple access. The array is implemented at the element-level with a 65 nm CMOS RFIC that has two transmit-and-receive branches. Each transmit-and-receive branch provides phase delay, true time delay, and amplitude control for up to 3 frequency channels independently and simultaneously. The baseband signal chain is enabled by a dual function N-path filter architecture that is passive and inductorless yet provides high-order filtering with complex roll-off and performs phase shifting. The resulting array consists of a 2-chip, 4-branch prototype that independently steers 3 frequency multiplexed incident data beams into different spatial directions, with true time delay control in each beam. A radiative measurement shows the router supporting a simultaneous throughput of 625 Mb/s 32-QAM data across 3 frequency channels that are independently spatially steered.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-beam, Scalable 28 GHz Relay Array with Frequency and Spatial Division Multiple Access Using Passive, High-Order N-Path Filters\",\"authors\":\"P. Khial, Samir Nooshabadi, Austin C. Fikes, A. Hajimiri\",\"doi\":\"10.1109/RFIC54546.2022.9863113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 28 GHz scalable relay array that independently re-routes multiple beamformed data-channels in different frequency bands is presented, allowing for frequency and spatial division multiple access. The array is implemented at the element-level with a 65 nm CMOS RFIC that has two transmit-and-receive branches. Each transmit-and-receive branch provides phase delay, true time delay, and amplitude control for up to 3 frequency channels independently and simultaneously. The baseband signal chain is enabled by a dual function N-path filter architecture that is passive and inductorless yet provides high-order filtering with complex roll-off and performs phase shifting. The resulting array consists of a 2-chip, 4-branch prototype that independently steers 3 frequency multiplexed incident data beams into different spatial directions, with true time delay control in each beam. A radiative measurement shows the router supporting a simultaneous throughput of 625 Mb/s 32-QAM data across 3 frequency channels that are independently spatially steered.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-beam, Scalable 28 GHz Relay Array with Frequency and Spatial Division Multiple Access Using Passive, High-Order N-Path Filters
A 28 GHz scalable relay array that independently re-routes multiple beamformed data-channels in different frequency bands is presented, allowing for frequency and spatial division multiple access. The array is implemented at the element-level with a 65 nm CMOS RFIC that has two transmit-and-receive branches. Each transmit-and-receive branch provides phase delay, true time delay, and amplitude control for up to 3 frequency channels independently and simultaneously. The baseband signal chain is enabled by a dual function N-path filter architecture that is passive and inductorless yet provides high-order filtering with complex roll-off and performs phase shifting. The resulting array consists of a 2-chip, 4-branch prototype that independently steers 3 frequency multiplexed incident data beams into different spatial directions, with true time delay control in each beam. A radiative measurement shows the router supporting a simultaneous throughput of 625 Mb/s 32-QAM data across 3 frequency channels that are independently spatially steered.