{"title":"基于迁移学习的深度网络模型的比较分析","authors":"Nalini M.K, Radhika K.R","doi":"10.1109/I-SMAC49090.2020.9243469","DOIUrl":null,"url":null,"abstract":"Deep learning has had remarkable success in several applications such as classification, clustering, regression etc. Several assumptions are made during the learning process which may not be apt for all real-world applications due to change in the feature space. For the classification task, deep learning models are most appropriate if a large amount of data is used for training. Therefore, enhancement is made from deep learning to transfer learning by knowledge transfer from feature space. In this paper, the accuracy obtained, number of iterations, and time taken for classification of various pre-trained networks is compared through transfer learning. The results reveal that the accuracy is higher when the training data is large compared to that with a small dataset.","PeriodicalId":432766,"journal":{"name":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Comparative analysis of deep network models through transfer learning\",\"authors\":\"Nalini M.K, Radhika K.R\",\"doi\":\"10.1109/I-SMAC49090.2020.9243469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has had remarkable success in several applications such as classification, clustering, regression etc. Several assumptions are made during the learning process which may not be apt for all real-world applications due to change in the feature space. For the classification task, deep learning models are most appropriate if a large amount of data is used for training. Therefore, enhancement is made from deep learning to transfer learning by knowledge transfer from feature space. In this paper, the accuracy obtained, number of iterations, and time taken for classification of various pre-trained networks is compared through transfer learning. The results reveal that the accuracy is higher when the training data is large compared to that with a small dataset.\",\"PeriodicalId\":432766,\"journal\":{\"name\":\"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC49090.2020.9243469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC49090.2020.9243469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative analysis of deep network models through transfer learning
Deep learning has had remarkable success in several applications such as classification, clustering, regression etc. Several assumptions are made during the learning process which may not be apt for all real-world applications due to change in the feature space. For the classification task, deep learning models are most appropriate if a large amount of data is used for training. Therefore, enhancement is made from deep learning to transfer learning by knowledge transfer from feature space. In this paper, the accuracy obtained, number of iterations, and time taken for classification of various pre-trained networks is compared through transfer learning. The results reveal that the accuracy is higher when the training data is large compared to that with a small dataset.