{"title":"基于故障的侧信道密码分析容错Rijndael对称分组密码结构","authors":"R. Karri, Kaijie Wu, P. Mishra, Yongkook Kim","doi":"10.1109/DFTVS.2001.966796","DOIUrl":null,"url":null,"abstract":"Fault-based side channel cryptanalysis is very effective against symmetric and asymmetric encryption algorithms. Although straightforward hardware and time redundancy based Concurrent Error Detection (CED) architectures can be used to thwart such attacks, they entail significant overhead (either area or performance). In this paper we investigate systematic approaches to low-cost, low-latency CED for Rijndael symmetric encryption algorithm. These approaches exploit the inverse relationship that exists between Rijndael encryption and decryption at various levels and develop CED architectures that explore the trade-off between area overhead, performance penalty and error detection latency. The proposed techniques have been validated on FPGA implementations.","PeriodicalId":187031,"journal":{"name":"Proceedings 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Fault-based side-channel cryptanalysis tolerant Rijndael symmetric block cipher architecture\",\"authors\":\"R. Karri, Kaijie Wu, P. Mishra, Yongkook Kim\",\"doi\":\"10.1109/DFTVS.2001.966796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault-based side channel cryptanalysis is very effective against symmetric and asymmetric encryption algorithms. Although straightforward hardware and time redundancy based Concurrent Error Detection (CED) architectures can be used to thwart such attacks, they entail significant overhead (either area or performance). In this paper we investigate systematic approaches to low-cost, low-latency CED for Rijndael symmetric encryption algorithm. These approaches exploit the inverse relationship that exists between Rijndael encryption and decryption at various levels and develop CED architectures that explore the trade-off between area overhead, performance penalty and error detection latency. The proposed techniques have been validated on FPGA implementations.\",\"PeriodicalId\":187031,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFTVS.2001.966796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFTVS.2001.966796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault-based side channel cryptanalysis is very effective against symmetric and asymmetric encryption algorithms. Although straightforward hardware and time redundancy based Concurrent Error Detection (CED) architectures can be used to thwart such attacks, they entail significant overhead (either area or performance). In this paper we investigate systematic approaches to low-cost, low-latency CED for Rijndael symmetric encryption algorithm. These approaches exploit the inverse relationship that exists between Rijndael encryption and decryption at various levels and develop CED architectures that explore the trade-off between area overhead, performance penalty and error detection latency. The proposed techniques have been validated on FPGA implementations.