用于图像分类和分割的尺度优化文本

Yousun Kang, A. Sugimoto
{"title":"用于图像分类和分割的尺度优化文本","authors":"Yousun Kang, A. Sugimoto","doi":"10.1109/ISM.2011.48","DOIUrl":null,"url":null,"abstract":"Texton is a representative dense visual word and it has proven its effectiveness in categorizing materials as well as generic object classes. Despite its success and popularity, no prior work has tackled the problem of its scale optimization for a given image data and associated object category. We propose scale-optimized textons to learn the best scale for each object in a scene, and incorporate them into image categorization and segmentation. Our textonization process produces a scale-optimized codebook of visual words. We approach the scale-optimization problem of textons by using the scene-context scale in each image, which is the effective scale of local context to classify an image pixel in a scene. We perform the textonization process using the randomized decision forest which is a powerful tool with high computational efficiency in vision applications. Our experiments using MSRC and VOC 2007 segmentation dataset show that our scale-optimized textons improve the performance of image categorization and segmentation.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scale-Optimized Textons for Image Categorization and Segmentation\",\"authors\":\"Yousun Kang, A. Sugimoto\",\"doi\":\"10.1109/ISM.2011.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texton is a representative dense visual word and it has proven its effectiveness in categorizing materials as well as generic object classes. Despite its success and popularity, no prior work has tackled the problem of its scale optimization for a given image data and associated object category. We propose scale-optimized textons to learn the best scale for each object in a scene, and incorporate them into image categorization and segmentation. Our textonization process produces a scale-optimized codebook of visual words. We approach the scale-optimization problem of textons by using the scene-context scale in each image, which is the effective scale of local context to classify an image pixel in a scene. We perform the textonization process using the randomized decision forest which is a powerful tool with high computational efficiency in vision applications. Our experiments using MSRC and VOC 2007 segmentation dataset show that our scale-optimized textons improve the performance of image categorization and segmentation.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Texton是一个具有代表性的密集视觉词,它已经证明了它在材料分类和一般对象分类方面的有效性。尽管它取得了成功和普及,但之前没有工作解决了给定图像数据和相关对象类别的尺度优化问题。我们提出了尺度优化的文本来学习场景中每个物体的最佳尺度,并将其纳入图像分类和分割中。我们的文本化过程产生了一个规模优化的视觉单词码本。我们利用每幅图像中的场景-上下文尺度(scene-context scale)来解决文本的尺度优化问题,该尺度是局部上下文对场景中图像像素进行分类的有效尺度。我们使用随机决策森林来执行文本化过程,随机决策森林是视觉应用中计算效率高的强大工具。我们使用MSRC和VOC 2007分割数据集进行的实验表明,我们的尺度优化文本提高了图像分类和分割的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale-Optimized Textons for Image Categorization and Segmentation
Texton is a representative dense visual word and it has proven its effectiveness in categorizing materials as well as generic object classes. Despite its success and popularity, no prior work has tackled the problem of its scale optimization for a given image data and associated object category. We propose scale-optimized textons to learn the best scale for each object in a scene, and incorporate them into image categorization and segmentation. Our textonization process produces a scale-optimized codebook of visual words. We approach the scale-optimization problem of textons by using the scene-context scale in each image, which is the effective scale of local context to classify an image pixel in a scene. We perform the textonization process using the randomized decision forest which is a powerful tool with high computational efficiency in vision applications. Our experiments using MSRC and VOC 2007 segmentation dataset show that our scale-optimized textons improve the performance of image categorization and segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Subjective Evaluation of 3D Iptv Broadcasting Implementations Considering Coding and Transmission Degradation A Low Memory Requirements Execution Flow for the Non-Uniform Grid Projection Super-Resolution Algorithm 3D Image Browsing on Mobile Devices Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Automatic Bird Species Identification for Large Number of Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1